Merge pull request #4 from fredmaloggia/codex/review-function-consolidation-across-files-rhuc38
Add asset names to open trade exports and copy outputs
This commit is contained in:
@@ -28,6 +28,8 @@ from shared_utils import (
|
||||
load_config,
|
||||
predict_from_library,
|
||||
read_connection_txt,
|
||||
require_section,
|
||||
require_value,
|
||||
z_norm,
|
||||
)
|
||||
#from math import isfinite
|
||||
@@ -69,6 +71,10 @@ def savefig_safe(path, **kwargs):
|
||||
# PARAMETRI GLOBALI
|
||||
# =========================================
|
||||
CONFIG = load_config()
|
||||
DB_CONFIG = require_section(CONFIG, "db")
|
||||
PATTERN_CONFIG = require_section(CONFIG, "pattern")
|
||||
TAGGING_CONFIG = require_section(CONFIG, "tagging")
|
||||
RANKING_CONFIG = require_section(CONFIG, "ranking")
|
||||
DB_CONFIG = CONFIG.get("db", {})
|
||||
PATTERN_CONFIG = CONFIG.get("pattern", {})
|
||||
TAGGING_CONFIG = CONFIG.get("tagging", {})
|
||||
@@ -82,6 +88,34 @@ OUTPUT_PATTERN_XLSX = "pattern_signals.xlsx"
|
||||
ERROR_LOG_CSV = "errori_isin.csv"
|
||||
|
||||
# Stored Procedure & parametri
|
||||
STORED_PROC = str(require_value(DB_CONFIG, "stored_proc", "db"))
|
||||
N_BARS = int(require_value(DB_CONFIG, "n_bars", "db"))
|
||||
PTF_CURR = str(require_value(DB_CONFIG, "ptf_curr", "db"))
|
||||
|
||||
# Pattern-matching (iper-parametri)
|
||||
WP = int(require_value(PATTERN_CONFIG, "wp", "pattern")) # lunghezza finestra pattern (barre)
|
||||
HA = int(require_value(PATTERN_CONFIG, "ha", "pattern")) # orizzonte outcome (barre)
|
||||
KNN_K = int(require_value(PATTERN_CONFIG, "knn_k", "pattern")) # numero di vicini
|
||||
THETA = float(require_value(PATTERN_CONFIG, "theta", "pattern")) # soglia su outcome per generare segnale
|
||||
EMBARGO = require_value(PATTERN_CONFIG, "embargo", "pattern")
|
||||
if EMBARGO is None:
|
||||
EMBARGO = WP + HA
|
||||
else:
|
||||
EMBARGO = int(EMBARGO)
|
||||
|
||||
# Tagging rule-based (soglie)
|
||||
Z_REV = float(require_value(TAGGING_CONFIG, "z_rev", "tagging"))
|
||||
Z_VOL = float(require_value(TAGGING_CONFIG, "z_vol", "tagging"))
|
||||
STD_COMP_PCT = float(require_value(TAGGING_CONFIG, "std_comp_pct", "tagging"))
|
||||
|
||||
DAYS_PER_YEAR = 252
|
||||
|
||||
TOP_N_MAX = int(require_value(RANKING_CONFIG, "top_n_max", "ranking")) # numero massimo di asset ammessi
|
||||
RP_MAX_WEIGHT = require_value(RANKING_CONFIG, "rp_max_weight", "ranking") # 2 x 1/15 ≈ 0.1333 = 13,33%
|
||||
if RP_MAX_WEIGHT is None:
|
||||
RP_MAX_WEIGHT = 2 / max(TOP_N_MAX, 1)
|
||||
else:
|
||||
RP_MAX_WEIGHT = float(RP_MAX_WEIGHT)
|
||||
STORED_PROC = DB_CONFIG.get("stored_proc", "opt_RendimentoGiornaliero1_ALL")
|
||||
N_BARS = DB_CONFIG.get("n_bars", 1305)
|
||||
PTF_CURR = DB_CONFIG.get("ptf_curr", "EUR")
|
||||
|
||||
@@ -3,6 +3,7 @@ from __future__ import annotations
|
||||
|
||||
import json
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional, Sequence, Tuple
|
||||
from typing import Dict, List, Optional, Sequence, Tuple
|
||||
|
||||
import numpy as np
|
||||
@@ -21,6 +22,19 @@ def load_config(path: Optional[Path] = None) -> Dict:
|
||||
return json.load(fh)
|
||||
|
||||
|
||||
def require_section(config: Dict, section: str) -> Dict:
|
||||
sect = config.get(section)
|
||||
if not isinstance(sect, dict):
|
||||
raise KeyError(f"Missing '{section}' section in configuration file")
|
||||
return sect
|
||||
|
||||
|
||||
def require_value(section: Dict, key: str, section_name: str) -> Any:
|
||||
if key not in section:
|
||||
raise KeyError(f"Missing key '{key}' inside '{section_name}' section of configuration file")
|
||||
return section[key]
|
||||
|
||||
|
||||
def detect_column(df: pd.DataFrame, candidates: Sequence[str]) -> Optional[str]:
|
||||
"""Return the first column whose name matches one of the candidates (case insensitive)."""
|
||||
low = {c.lower(): c for c in df.columns}
|
||||
@@ -213,6 +227,8 @@ __all__ = [
|
||||
"build_pattern_library",
|
||||
"characterize_window",
|
||||
"detect_column",
|
||||
"require_section",
|
||||
"require_value",
|
||||
"hurst_rs",
|
||||
"load_config",
|
||||
"predict_from_library",
|
||||
|
||||
@@ -24,6 +24,7 @@ import os
|
||||
import ssl
|
||||
import json
|
||||
import time
|
||||
import shutil
|
||||
import warnings
|
||||
import datetime as dt
|
||||
from dataclasses import dataclass
|
||||
@@ -32,77 +33,121 @@ from typing import Dict, List, Optional, Tuple, Iterable, Set
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from urllib.request import urlopen
|
||||
from urllib.error import URLError, HTTPError
|
||||
from urllib.request import urlopen
|
||||
from urllib.error import URLError, HTTPError
|
||||
|
||||
# DB
|
||||
import sqlalchemy as sa
|
||||
from sqlalchemy import text as sql_text
|
||||
|
||||
from shared_utils import (
|
||||
build_hurst_map,
|
||||
build_pattern_library,
|
||||
characterize_window,
|
||||
detect_column,
|
||||
load_config,
|
||||
predict_from_library,
|
||||
read_connection_txt,
|
||||
z_norm,
|
||||
)
|
||||
import sqlalchemy as sa
|
||||
from sqlalchemy import text as sql_text
|
||||
|
||||
from shared_utils import (
|
||||
build_hurst_map,
|
||||
build_pattern_library,
|
||||
characterize_window,
|
||||
detect_column,
|
||||
load_config,
|
||||
predict_from_library,
|
||||
read_connection_txt,
|
||||
require_section,
|
||||
require_value,
|
||||
z_norm,
|
||||
)
|
||||
|
||||
# =========================
|
||||
# CONFIG
|
||||
# =========================
|
||||
CONFIG = load_config()
|
||||
DB_CONFIG = CONFIG.get("db", {})
|
||||
PATTERN_CONFIG = CONFIG.get("pattern", {})
|
||||
TAGGING_CONFIG = CONFIG.get("tagging", {})
|
||||
RANKING_CONFIG = CONFIG.get("ranking", {})
|
||||
SIGNALS_CONFIG = CONFIG.get("signals", {})
|
||||
|
||||
BASE_DIR = Path(".")
|
||||
UNIVERSO_XLSX = BASE_DIR / "Universo per Trading System.xlsx"
|
||||
CONNECTION_TXT = BASE_DIR / "connection.txt"
|
||||
AUDIT_LOG_CSV = BASE_DIR / "trades_audit_log.csv"
|
||||
OPEN_TRADES_DIR = BASE_DIR / "open_trades"
|
||||
CONFIG = load_config()
|
||||
DB_CONFIG = require_section(CONFIG, "db")
|
||||
PATTERN_CONFIG = require_section(CONFIG, "pattern")
|
||||
TAGGING_CONFIG = require_section(CONFIG, "tagging")
|
||||
RANKING_CONFIG = require_section(CONFIG, "ranking")
|
||||
SIGNALS_CONFIG = require_section(CONFIG, "signals")
|
||||
DB_CONFIG = CONFIG.get("db", {})
|
||||
PATTERN_CONFIG = CONFIG.get("pattern", {})
|
||||
TAGGING_CONFIG = CONFIG.get("tagging", {})
|
||||
RANKING_CONFIG = CONFIG.get("ranking", {})
|
||||
SIGNALS_CONFIG = CONFIG.get("signals", {})
|
||||
|
||||
BASE_DIR = Path(".")
|
||||
UNIVERSO_XLSX = BASE_DIR / "Universo per Trading System.xlsx"
|
||||
CONNECTION_TXT = BASE_DIR / "connection.txt"
|
||||
AUDIT_LOG_CSV = BASE_DIR / "trades_audit_log.csv"
|
||||
OPEN_TRADES_DIR = BASE_DIR / "open_trades"
|
||||
DROPBOX_EXPORT_DIR = Path(r"C:\Users\Admin\Dropbox\Condivisa Lavoro\Segnali di trading su ETF")
|
||||
|
||||
def _dated_signals_filename() -> Path:
|
||||
date_prefix = pd.Timestamp.today().strftime("%Y%m%d")
|
||||
return BASE_DIR / f"{date_prefix}_signals.xlsx"
|
||||
|
||||
# Stored procedure / parametri DB
|
||||
SP_NAME_DEFAULT = DB_CONFIG.get("stored_proc", "opt_RendimentoGiornaliero1_ALL")
|
||||
SP_N_DEFAULT = DB_CONFIG.get("n_bars", 1305)
|
||||
PTF_CURR_DEFAULT = DB_CONFIG.get("ptf_curr", "EUR")
|
||||
SP_NAME_DEFAULT = str(require_value(DB_CONFIG, "stored_proc", "db"))
|
||||
SP_N_DEFAULT = int(require_value(DB_CONFIG, "n_bars", "db"))
|
||||
PTF_CURR_DEFAULT = str(require_value(DB_CONFIG, "ptf_curr", "db"))
|
||||
|
||||
# Pattern recognition (come backtest)
|
||||
WP = PATTERN_CONFIG.get("wp", 60)
|
||||
HA = PATTERN_CONFIG.get("ha", 10)
|
||||
KNN_K = PATTERN_CONFIG.get("knn_k", 25)
|
||||
THETA = PATTERN_CONFIG.get("theta", 0.005) # 0,005% in decimali (identico al backtest)
|
||||
Z_REV = TAGGING_CONFIG.get("z_rev", 2.0)
|
||||
Z_VOL = TAGGING_CONFIG.get("z_vol", 2.0)
|
||||
STD_COMP_PCT = TAGGING_CONFIG.get("std_comp_pct", 0.15)
|
||||
WP = int(require_value(PATTERN_CONFIG, "wp", "pattern"))
|
||||
HA = int(require_value(PATTERN_CONFIG, "ha", "pattern"))
|
||||
KNN_K = int(require_value(PATTERN_CONFIG, "knn_k", "pattern"))
|
||||
THETA = float(require_value(PATTERN_CONFIG, "theta", "pattern")) # 0,005% in decimali (identico al backtest)
|
||||
Z_REV = float(require_value(TAGGING_CONFIG, "z_rev", "tagging"))
|
||||
Z_VOL = float(require_value(TAGGING_CONFIG, "z_vol", "tagging"))
|
||||
STD_COMP_PCT = float(require_value(TAGGING_CONFIG, "std_comp_pct", "tagging"))
|
||||
|
||||
# Exit rules (identiche al backtest)
|
||||
SL_BPS = SIGNALS_CONFIG.get("sl_bps", 300.0)
|
||||
TP_BPS = SIGNALS_CONFIG.get("tp_bps", 800.0)
|
||||
TRAIL_BPS = SIGNALS_CONFIG.get("trail_bps", 300.0)
|
||||
TIME_STOP_BARS = SIGNALS_CONFIG.get("time_stop_bars", 20)
|
||||
THETA_EXIT = SIGNALS_CONFIG.get("theta_exit", 0.0) # soglia debolezza
|
||||
WEAK_DAYS_EXIT = SIGNALS_CONFIG.get("weak_days_exit") # uscita IMMEDIATA in caso di debolezza (come backtest)
|
||||
SL_BPS = float(require_value(SIGNALS_CONFIG, "sl_bps", "signals"))
|
||||
TP_BPS = float(require_value(SIGNALS_CONFIG, "tp_bps", "signals"))
|
||||
TRAIL_BPS = float(require_value(SIGNALS_CONFIG, "trail_bps", "signals"))
|
||||
TIME_STOP_BARS = int(require_value(SIGNALS_CONFIG, "time_stop_bars", "signals"))
|
||||
THETA_EXIT = float(require_value(SIGNALS_CONFIG, "theta_exit", "signals")) # soglia debolezza
|
||||
WEAK_DAYS_EXIT = require_value(SIGNALS_CONFIG, "weak_days_exit", "signals") # uscita IMMEDIATA in caso di debolezza (come backtest)
|
||||
|
||||
# Ranking e selezione Top-N per APERTURE
|
||||
MAX_OPEN = SIGNALS_CONFIG.get("max_open", 15) # cap strumenti aperti oggi (come backtest)
|
||||
MAX_OPEN = int(require_value(SIGNALS_CONFIG, "max_open", "signals")) # cap strumenti aperti oggi (come backtest)
|
||||
|
||||
# Allineamento al backtest v3.1.5 per il cap del Risk Parity
|
||||
TOP_N_MAX = RANKING_CONFIG.get("top_n_max", MAX_OPEN)
|
||||
RP_MAX_WEIGHT = RANKING_CONFIG.get("rp_max_weight", 2 / max(TOP_N_MAX, 1)) # ≈ 0.1333 = 13,33% per singolo asset
|
||||
TOP_N_MAX = int(require_value(RANKING_CONFIG, "top_n_max", "ranking"))
|
||||
RP_MAX_WEIGHT = require_value(RANKING_CONFIG, "rp_max_weight", "ranking") # ≈ 0.1333 = 13,33% per singolo asset
|
||||
if RP_MAX_WEIGHT is None:
|
||||
RP_MAX_WEIGHT = 2 / max(TOP_N_MAX, 1)
|
||||
else:
|
||||
RP_MAX_WEIGHT = float(RP_MAX_WEIGHT)
|
||||
|
||||
# Sizing
|
||||
BASE_CAPITAL_PER_STRATEGY = SIGNALS_CONFIG.get("base_capital_per_strategy", 100.0)
|
||||
MIN_TRADE_NOTIONAL = SIGNALS_CONFIG.get("min_trade_notional", 0.01)
|
||||
RISK_PARITY_LOOKBACK = SIGNALS_CONFIG.get("risk_parity_lookback", 60)
|
||||
BASE_CAPITAL_PER_STRATEGY = float(require_value(SIGNALS_CONFIG, "base_capital_per_strategy", "signals"))
|
||||
MIN_TRADE_NOTIONAL = float(require_value(SIGNALS_CONFIG, "min_trade_notional", "signals"))
|
||||
RISK_PARITY_LOOKBACK = int(require_value(SIGNALS_CONFIG, "risk_parity_lookback", "signals"))
|
||||
SP_NAME_DEFAULT = DB_CONFIG.get("stored_proc", "opt_RendimentoGiornaliero1_ALL")
|
||||
SP_N_DEFAULT = DB_CONFIG.get("n_bars", 1305)
|
||||
PTF_CURR_DEFAULT = DB_CONFIG.get("ptf_curr", "EUR")
|
||||
|
||||
# Pattern recognition (come backtest)
|
||||
WP = PATTERN_CONFIG.get("wp", 60)
|
||||
HA = PATTERN_CONFIG.get("ha", 10)
|
||||
KNN_K = PATTERN_CONFIG.get("knn_k", 25)
|
||||
THETA = PATTERN_CONFIG.get("theta", 0.005) # 0,005% in decimali (identico al backtest)
|
||||
Z_REV = TAGGING_CONFIG.get("z_rev", 2.0)
|
||||
Z_VOL = TAGGING_CONFIG.get("z_vol", 2.0)
|
||||
STD_COMP_PCT = TAGGING_CONFIG.get("std_comp_pct", 0.15)
|
||||
|
||||
# Exit rules (identiche al backtest)
|
||||
SL_BPS = SIGNALS_CONFIG.get("sl_bps", 300.0)
|
||||
TP_BPS = SIGNALS_CONFIG.get("tp_bps", 800.0)
|
||||
TRAIL_BPS = SIGNALS_CONFIG.get("trail_bps", 300.0)
|
||||
TIME_STOP_BARS = SIGNALS_CONFIG.get("time_stop_bars", 20)
|
||||
THETA_EXIT = SIGNALS_CONFIG.get("theta_exit", 0.0) # soglia debolezza
|
||||
WEAK_DAYS_EXIT = SIGNALS_CONFIG.get("weak_days_exit") # uscita IMMEDIATA in caso di debolezza (come backtest)
|
||||
|
||||
# Ranking e selezione Top-N per APERTURE
|
||||
MAX_OPEN = SIGNALS_CONFIG.get("max_open", 15) # cap strumenti aperti oggi (come backtest)
|
||||
|
||||
# Allineamento al backtest v3.1.5 per il cap del Risk Parity
|
||||
TOP_N_MAX = RANKING_CONFIG.get("top_n_max", MAX_OPEN)
|
||||
RP_MAX_WEIGHT = RANKING_CONFIG.get("rp_max_weight", 2 / max(TOP_N_MAX, 1)) # ≈ 0.1333 = 13,33% per singolo asset
|
||||
|
||||
# Sizing
|
||||
BASE_CAPITAL_PER_STRATEGY = SIGNALS_CONFIG.get("base_capital_per_strategy", 100.0)
|
||||
MIN_TRADE_NOTIONAL = SIGNALS_CONFIG.get("min_trade_notional", 0.01)
|
||||
RISK_PARITY_LOOKBACK = SIGNALS_CONFIG.get("risk_parity_lookback", 60)
|
||||
|
||||
# Calendario
|
||||
BUSINESS_DAYS_ONLY = True
|
||||
@@ -117,6 +162,18 @@ np.random.seed(SEED)
|
||||
def ensure_dir(p: Path):
|
||||
p.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
def copy_to_dropbox(src: Path, dst_dir: Path = DROPBOX_EXPORT_DIR):
|
||||
if not src or not dst_dir:
|
||||
return
|
||||
if not src.exists():
|
||||
return
|
||||
try:
|
||||
ensure_dir(dst_dir)
|
||||
dst = dst_dir / src.name
|
||||
shutil.copy2(src, dst)
|
||||
except Exception as exc:
|
||||
print(f"[WARN] impossibile copiare {src} su {dst_dir}: {exc}")
|
||||
|
||||
def next_business_day(d: dt.date) -> dt.date:
|
||||
nd = d + dt.timedelta(days=1)
|
||||
if not BUSINESS_DAYS_ONLY:
|
||||
@@ -131,9 +188,9 @@ def _safe_to_float(x) -> Optional[float]:
|
||||
except Exception:
|
||||
return None
|
||||
|
||||
def _db_fetch_returns(conn_str: str,
|
||||
isins: List[str],
|
||||
sp_name: Optional[str] = None,
|
||||
def _db_fetch_returns(conn_str: str,
|
||||
isins: List[str],
|
||||
sp_name: Optional[str] = None,
|
||||
n_bars: Optional[int] = None,
|
||||
ptf_curr: Optional[str] = None) -> pd.DataFrame:
|
||||
engine = sa.create_engine(conn_str, fast_executemany=True)
|
||||
@@ -144,11 +201,11 @@ def _db_fetch_returns(conn_str: str,
|
||||
sql_sp = sql_text(f"EXEC {sp} @ISIN = :isin, @n = :n, @PtfCurr = :ptf")
|
||||
frames: List[pd.DataFrame] = []
|
||||
|
||||
with engine.begin() as conn:
|
||||
for i, isin in enumerate(isins, start=1):
|
||||
print(f"[DB] ({i}/{len(isins)}) scarico serie storica per {isin} ...", flush=True)
|
||||
try:
|
||||
df = pd.read_sql_query(sql_sp, conn, params={"isin": str(isin), "n": int(n_val), "ptf": ptf})
|
||||
with engine.begin() as conn:
|
||||
for i, isin in enumerate(isins, start=1):
|
||||
print(f"[DB] ({i}/{len(isins)}) scarico serie storica per {isin} ...", flush=True)
|
||||
try:
|
||||
df = pd.read_sql_query(sql_sp, conn, params={"isin": str(isin), "n": int(n_val), "ptf": ptf})
|
||||
except Exception as e:
|
||||
print(f"[ERROR] SP {sp} fallita per {isin}: {e}")
|
||||
continue
|
||||
@@ -157,11 +214,11 @@ def _db_fetch_returns(conn_str: str,
|
||||
print(f"[WARN] Nessun dato per {isin}")
|
||||
continue
|
||||
|
||||
col_date = detect_column(df, ["Date", "Data", "Datetime", "Timestamp", "Time"])
|
||||
col_ret = detect_column(df, ["Ret", "Return", "Rendimento", "Rend", "Ret_%", "RET"])
|
||||
if not col_date or not col_ret:
|
||||
print(f"[WARN] Colonne mancanti per {isin}")
|
||||
continue
|
||||
col_date = detect_column(df, ["Date", "Data", "Datetime", "Timestamp", "Time"])
|
||||
col_ret = detect_column(df, ["Ret", "Return", "Rendimento", "Rend", "Ret_%", "RET"])
|
||||
if not col_date or not col_ret:
|
||||
print(f"[WARN] Colonne mancanti per {isin}")
|
||||
continue
|
||||
|
||||
out = df[[col_date, col_ret]].copy()
|
||||
out.columns = ["Date", "Ret"]
|
||||
@@ -289,17 +346,17 @@ def generate_signals_today(universe: pd.DataFrame,
|
||||
lib_wins, lib_out = build_pattern_library(r, WP, HA)
|
||||
if lib_wins is None or len(r) < WP + HA:
|
||||
est_out, avg_dist, sig = np.nan, np.nan, 0
|
||||
ptype, pconf = characterize_window(r, WP, z_rev=Z_REV, z_vol=Z_VOL, std_comp_pct=STD_COMP_PCT)
|
||||
ptype, pconf = characterize_window(r, WP, z_rev=Z_REV, z_vol=Z_VOL, std_comp_pct=STD_COMP_PCT)
|
||||
else:
|
||||
curr = r.values[-WP:]
|
||||
curr_zn = z_norm(curr)
|
||||
if curr_zn is None:
|
||||
est_out, avg_dist, sig = np.nan, np.nan, 0
|
||||
ptype, pconf = characterize_window(r, WP, z_rev=Z_REV, z_vol=Z_VOL, std_comp_pct=STD_COMP_PCT)
|
||||
else:
|
||||
est_out, avg_dist, _ = predict_from_library(curr_zn, lib_wins, lib_out, k=KNN_K)
|
||||
sig = 1 if (pd.notna(est_out) and float(est_out) > float(theta_entry)) else 0
|
||||
ptype, pconf = characterize_window(r, WP, z_rev=Z_REV, z_vol=Z_VOL, std_comp_pct=STD_COMP_PCT)
|
||||
if curr_zn is None:
|
||||
est_out, avg_dist, sig = np.nan, np.nan, 0
|
||||
ptype, pconf = characterize_window(r, WP, z_rev=Z_REV, z_vol=Z_VOL, std_comp_pct=STD_COMP_PCT)
|
||||
else:
|
||||
est_out, avg_dist, _ = predict_from_library(curr_zn, lib_wins, lib_out, k=KNN_K)
|
||||
sig = 1 if (pd.notna(est_out) and float(est_out) > float(theta_entry)) else 0
|
||||
ptype, pconf = characterize_window(r, WP, z_rev=Z_REV, z_vol=Z_VOL, std_comp_pct=STD_COMP_PCT)
|
||||
|
||||
rows.append({
|
||||
"Date": decision_date, "ISIN": isin,
|
||||
@@ -372,13 +429,15 @@ def load_open_trades(strategy: str) -> pd.DataFrame:
|
||||
p = open_trades_path(strategy)
|
||||
if not p.exists():
|
||||
return pd.DataFrame(columns=[
|
||||
"Strategy","ISIN","EntryDate","EntryIndex","EntryAmount","SizeWeight","PeakPnL","WeakDays","Notes"
|
||||
"Strategy","ISIN","AssetName","EntryDate","EntryIndex","EntryAmount","SizeWeight","PeakPnL","WeakDays","Notes"
|
||||
])
|
||||
df = pd.read_csv(p)
|
||||
if "EntryDate" in df.columns:
|
||||
df["EntryDate"] = pd.to_datetime(df["EntryDate"], errors="coerce").dt.date
|
||||
if "WeakDays" not in df.columns:
|
||||
df["WeakDays"] = 0
|
||||
if "AssetName" not in df.columns:
|
||||
df["AssetName"] = ""
|
||||
df["Strategy"] = strategy
|
||||
return df
|
||||
|
||||
@@ -475,7 +534,8 @@ def update_positions_and_build_orders(universe: pd.DataFrame,
|
||||
signals_today: pd.DataFrame,
|
||||
today: dt.date,
|
||||
buy_rank_df: Optional[pd.DataFrame],
|
||||
allowed_open_isins: Optional[List[str]] = None) -> Tuple[pd.DataFrame, List[Dict]]:
|
||||
allowed_open_isins: Optional[List[str]] = None,
|
||||
asset_name_map: Optional[pd.Series] = None) -> Tuple[pd.DataFrame, List[Dict]]:
|
||||
"""
|
||||
- decision_date = ultima data disponibile (EOD)
|
||||
- target giornaliero = primi MAX_OPEN del ranking buy (uguale per tutte le strategie)
|
||||
@@ -604,6 +664,17 @@ def update_positions_and_build_orders(universe: pd.DataFrame,
|
||||
}])], ignore_index=True)
|
||||
current_set.add(isin)
|
||||
|
||||
if asset_name_map is not None:
|
||||
df_open["AssetName"] = df_open["ISIN"].astype(str).map(asset_name_map).fillna("")
|
||||
else:
|
||||
if "AssetName" not in df_open.columns:
|
||||
df_open["AssetName"] = ""
|
||||
if "AssetName" in df_open.columns:
|
||||
cols = list(df_open.columns)
|
||||
if "ISIN" in cols and "AssetName" in cols:
|
||||
cols.insert(cols.index("ISIN") + 1, cols.pop(cols.index("AssetName")))
|
||||
df_open = df_open[cols]
|
||||
|
||||
save_open_trades(strat, df_open)
|
||||
df_open["Strategy"] = strat
|
||||
open_concat.append(df_open)
|
||||
@@ -633,6 +704,19 @@ def main_run(run_date: Optional[dt.date] = None):
|
||||
|
||||
# 1) Universo
|
||||
universe = load_universe(UNIVERSO_XLSX)
|
||||
asset_name_col = detect_column(universe, [
|
||||
"Nome", "Name", "Asset", "Asset Name", "Descrizione", "Description"
|
||||
])
|
||||
if not asset_name_col:
|
||||
print("[WARN] Colonna con il nome dell'asset non trovata nell'universo.")
|
||||
asset_name_map: Optional[pd.Series] = None
|
||||
if asset_name_col:
|
||||
asset_name_map = (
|
||||
universe[["ISIN", asset_name_col]]
|
||||
.dropna(subset=["ISIN"])
|
||||
.assign(ISIN=lambda df: df["ISIN"].astype(str).str.strip())
|
||||
)
|
||||
asset_name_map = asset_name_map.set_index("ISIN")[asset_name_col].astype(str).str.strip()
|
||||
|
||||
# 2) Ritorni (DB)
|
||||
conn_str = read_connection_txt(CONNECTION_TXT)
|
||||
@@ -662,7 +746,8 @@ def main_run(run_date: Optional[dt.date] = None):
|
||||
open_df, audit_rows = update_positions_and_build_orders(
|
||||
universe, returns_long, sig_df, today,
|
||||
buy_rank_df=buy_rank_df,
|
||||
allowed_open_isins=allowed_open
|
||||
allowed_open_isins=allowed_open,
|
||||
asset_name_map=asset_name_map,
|
||||
)
|
||||
|
||||
# 5) Append audit log (TUTTE le strategie operative)
|
||||
@@ -672,8 +757,20 @@ def main_run(run_date: Optional[dt.date] = None):
|
||||
# 6) Snapshot Excel datato — fogli con nomi completi
|
||||
ensure_dir(OPEN_TRADES_DIR)
|
||||
signals_path = _dated_signals_filename()
|
||||
signals_sheet = sig_df.reset_index()
|
||||
if asset_name_map is not None:
|
||||
signals_sheet["AssetName"] = signals_sheet["ISIN"].astype(str).map(asset_name_map).fillna("")
|
||||
else:
|
||||
signals_sheet["AssetName"] = ""
|
||||
|
||||
# inserisci la colonna subito dopo l'ISIN
|
||||
if "AssetName" in signals_sheet.columns:
|
||||
cols = list(signals_sheet.columns)
|
||||
cols.insert(cols.index("ISIN") + 1, cols.pop(cols.index("AssetName")))
|
||||
signals_sheet = signals_sheet[cols]
|
||||
|
||||
with pd.ExcelWriter(signals_path) as xw:
|
||||
sig_df.reset_index().to_excel(xw, sheet_name="Signals", index=False)
|
||||
signals_sheet.to_excel(xw, sheet_name="Signals", index=False)
|
||||
if not open_df.empty:
|
||||
for strat, g in open_df.groupby("Strategy"):
|
||||
sheet_name_map = {
|
||||
@@ -683,6 +780,12 @@ def main_run(run_date: Optional[dt.date] = None):
|
||||
sheet_name = sheet_name_map.get(strat, f"Open_{strat}")[:31]
|
||||
g.to_excel(xw, sheet_name=sheet_name, index=False)
|
||||
|
||||
copy_to_dropbox(signals_path)
|
||||
for strat in ["Equal_Weight", "Risk_Parity"]:
|
||||
csv_path = open_trades_path(strat)
|
||||
if csv_path.exists():
|
||||
copy_to_dropbox(csv_path)
|
||||
|
||||
print(f"✅ Signals generated for {today}. Saved to {signals_path}")
|
||||
print(f"Open trades saved in {OPEN_TRADES_DIR}")
|
||||
print(f"Audit log updated at {AUDIT_LOG_CSV}")
|
||||
|
||||
Reference in New Issue
Block a user