Add shared utilities and config
This commit is contained in:
@@ -19,8 +19,17 @@ import pandas as pd
|
||||
import numpy as np
|
||||
import sqlalchemy as sa
|
||||
from sqlalchemy import text
|
||||
import pyodbc
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from shared_utils import (
|
||||
build_pattern_library,
|
||||
characterize_window,
|
||||
detect_column,
|
||||
load_config,
|
||||
predict_from_library,
|
||||
read_connection_txt,
|
||||
z_norm,
|
||||
)
|
||||
#from math import isfinite
|
||||
import time
|
||||
|
||||
@@ -59,6 +68,12 @@ def savefig_safe(path, **kwargs):
|
||||
# =========================================
|
||||
# PARAMETRI GLOBALI
|
||||
# =========================================
|
||||
CONFIG = load_config()
|
||||
DB_CONFIG = CONFIG.get("db", {})
|
||||
PATTERN_CONFIG = CONFIG.get("pattern", {})
|
||||
TAGGING_CONFIG = CONFIG.get("tagging", {})
|
||||
RANKING_CONFIG = CONFIG.get("ranking", {})
|
||||
|
||||
UNIVERSO_XLSX = "Universo per Trading System.xlsx"
|
||||
|
||||
# Export
|
||||
@@ -67,70 +82,30 @@ OUTPUT_PATTERN_XLSX = "pattern_signals.xlsx"
|
||||
ERROR_LOG_CSV = "errori_isin.csv"
|
||||
|
||||
# Stored Procedure & parametri
|
||||
STORED_PROC = "opt_RendimentoGiornaliero1_ALL"
|
||||
N_BARS = 1305
|
||||
PTF_CURR = "EUR"
|
||||
STORED_PROC = DB_CONFIG.get("stored_proc", "opt_RendimentoGiornaliero1_ALL")
|
||||
N_BARS = DB_CONFIG.get("n_bars", 1305)
|
||||
PTF_CURR = DB_CONFIG.get("ptf_curr", "EUR")
|
||||
|
||||
# Pattern-matching (iper-parametri)
|
||||
WP = 60 # lunghezza finestra pattern (barre)
|
||||
HA = 10 # orizzonte outcome (barre)
|
||||
KNN_K = 25 # numero di vicini
|
||||
THETA = 0.005 # soglia su outcome per generare segnale
|
||||
EMBARGO = WP + HA
|
||||
WP = PATTERN_CONFIG.get("wp", 60) # lunghezza finestra pattern (barre)
|
||||
HA = PATTERN_CONFIG.get("ha", 10) # orizzonte outcome (barre)
|
||||
KNN_K = PATTERN_CONFIG.get("knn_k", 25) # numero di vicini
|
||||
THETA = PATTERN_CONFIG.get("theta", 0.005) # soglia su outcome per generare segnale
|
||||
EMBARGO = PATTERN_CONFIG.get("embargo", WP + HA)
|
||||
|
||||
# Tagging rule-based (soglie)
|
||||
Z_REV = 2.0
|
||||
Z_VOL = 2.0
|
||||
STD_COMP_PCT = 0.15
|
||||
Z_REV = TAGGING_CONFIG.get("z_rev", 2.0)
|
||||
Z_VOL = TAGGING_CONFIG.get("z_vol", 2.0)
|
||||
STD_COMP_PCT = TAGGING_CONFIG.get("std_comp_pct", 0.15)
|
||||
|
||||
DAYS_PER_YEAR = 252
|
||||
|
||||
TOP_N_MAX = 15 # numero massimo di asset ammessi
|
||||
RP_MAX_WEIGHT = 2 / TOP_N_MAX # 2 x 1/15 ≈ 0.1333 = 13,33%
|
||||
TOP_N_MAX = RANKING_CONFIG.get("top_n_max", 15) # numero massimo di asset ammessi
|
||||
RP_MAX_WEIGHT = RANKING_CONFIG.get("rp_max_weight", 2 / max(TOP_N_MAX, 1)) # 2 x 1/15 ≈ 0.1333 = 13,33%
|
||||
|
||||
# =========================================
|
||||
# UTILS GENERALI
|
||||
# =========================================
|
||||
def pick_first(df, candidates):
|
||||
low = {c.lower(): c for c in df.columns}
|
||||
for c in candidates:
|
||||
if c.lower() in low:
|
||||
return low[c.lower()]
|
||||
for c in candidates:
|
||||
matches = [low[k] for k in low if c.lower() in k]
|
||||
if matches:
|
||||
return matches[0]
|
||||
return None
|
||||
|
||||
def read_connection_txt(path="connection.txt"):
|
||||
"""
|
||||
connection.txt con:
|
||||
username=...
|
||||
password=...
|
||||
host=...
|
||||
port=1433
|
||||
database=...
|
||||
"""
|
||||
params = {}
|
||||
with open(path, "r", encoding="utf-8") as f:
|
||||
for line in f:
|
||||
line = line.strip()
|
||||
if line and not line.startswith("#") and "=" in line:
|
||||
k, v = line.split("=", 1)
|
||||
params[k.strip().lower()] = v.strip()
|
||||
|
||||
username = params.get("username")
|
||||
password = params.get("password")
|
||||
host = params.get("host")
|
||||
port = params.get("port", "1433")
|
||||
database = params.get("database")
|
||||
if not all([username, password, host, database]):
|
||||
raise ValueError("connection.txt incompleto: username/password/host/database richiesti.")
|
||||
|
||||
installed = [d for d in pyodbc.drivers()]
|
||||
driver_q = "ODBC+Driver+18+for+SQL+Server" if "ODBC Driver 18 for SQL Server" in installed else "ODBC+Driver+17+for+SQL+Server"
|
||||
return f"mssql+pyodbc://{username}:{password}@{host}:{port}/{database}?driver={driver_q}"
|
||||
|
||||
def clamp01(x):
|
||||
if not np.isfinite(x):
|
||||
return np.nan
|
||||
@@ -229,81 +204,6 @@ def hurst_dfa_returns(r, win_grid=None):
|
||||
slope, _ = np.polyfit(np.log(sizes), np.log(F_vals), 1)
|
||||
return clamp01(slope)
|
||||
|
||||
# =========== PATTERN MATCHING k-NN (su rendimenti) ===========
|
||||
def z_norm(arr):
|
||||
arr = np.asarray(arr, dtype=float)
|
||||
mu = arr.mean(); sd = arr.std()
|
||||
if sd < 1e-12:
|
||||
return None
|
||||
return (arr - mu)/(sd+1e-12)
|
||||
|
||||
def build_pattern_library(ret_series: pd.Series, Wp: int, Ha: int, embargo: int = None):
|
||||
x = ret_series.dropna().values
|
||||
N = len(x)
|
||||
if N < Wp + Ha + 10:
|
||||
return None, None
|
||||
wins = []
|
||||
outs = []
|
||||
for t in range(0, N - Wp - Ha):
|
||||
win = x[t:t+Wp]
|
||||
winzn = z_norm(win)
|
||||
if winzn is None:
|
||||
continue
|
||||
outcome = np.sum(x[t+Wp : t+Wp+Ha]) # outcome futuro su Ha barre
|
||||
wins.append(winzn); outs.append(outcome)
|
||||
if not wins:
|
||||
return None, None
|
||||
return np.array(wins), np.array(outs)
|
||||
|
||||
def predict_from_library(curr_win: np.ndarray, lib_wins: np.ndarray, lib_out: np.ndarray, k: int = 25):
|
||||
dists = np.linalg.norm(lib_wins - curr_win, axis=1)
|
||||
idx = np.argsort(dists)[:min(k, len(dists))]
|
||||
return float(np.median(lib_out[idx])), float(np.mean(dists[idx])), idx
|
||||
|
||||
# =========== TAGGING RULE-BASED (4 categorie) ===========
|
||||
def characterize_window(ret_series: pd.Series, Wp: int,
|
||||
z_rev=2.0, z_vol=2.0, std_comp_pct=0.15):
|
||||
x = ret_series.dropna().values
|
||||
if len(x) < max(WP, 30):
|
||||
return None, 0.0
|
||||
win = x[-Wp:]
|
||||
mu, sd = win.mean(), win.std()
|
||||
if sd < 1e-12:
|
||||
return "compression", 0.5
|
||||
|
||||
last = win[-1]
|
||||
z_last = (last - mu)/(sd+1e-12)
|
||||
abs_z_last = abs(z_last)
|
||||
last3 = win[-3:] if len(win) >= 3 else win
|
||||
sum3 = np.sum(last3)
|
||||
|
||||
if len(x) > 3*Wp:
|
||||
roll_std = pd.Series(x).rolling(Wp).std().dropna().values
|
||||
if len(roll_std) > 20:
|
||||
pct = (roll_std < np.std(win)).mean()
|
||||
else:
|
||||
pct = 0.5
|
||||
else:
|
||||
pct = 0.5
|
||||
|
||||
if pct < std_comp_pct:
|
||||
return "compression", float(1.0 - pct)
|
||||
|
||||
if abs(sum3) > 2*sd/np.sqrt(3) and np.sign(last3).sum() in (3, -3):
|
||||
conf = min(1.0, abs(sum3)/(sd+1e-12))
|
||||
return "momentum_burst", float(conf)
|
||||
|
||||
mean_prev = np.mean(win[:-1]) if len(win) > 1 else 0.0
|
||||
if abs_z_last >= z_rev and np.sign(last) != np.sign(mean_prev):
|
||||
conf = min(1.0, abs_z_last/3.0)
|
||||
return "reversal_candidate", float(conf)
|
||||
|
||||
if abs_z_last >= z_vol:
|
||||
conf = min(1.0, abs_z_last/3.0)
|
||||
return "vol_spike", float(conf)
|
||||
|
||||
return None, 0.0
|
||||
|
||||
# ---------------------------------
|
||||
# R^2 su equity line (log-equity vs tempo)
|
||||
# ---------------------------------
|
||||
@@ -455,13 +355,13 @@ def h_min_100(returns: pd.Series, month_len: int = 21):
|
||||
# =========================================
|
||||
universo = pd.read_excel(UNIVERSO_XLSX)
|
||||
|
||||
col_isin_uni = pick_first(universo, ["ISIN", "isin", "codice isin"])
|
||||
col_isin_uni = detect_column(universo, ["ISIN", "isin", "codice isin"])
|
||||
if col_isin_uni is None:
|
||||
raise ValueError("Nel file universo non trovo una colonna ISIN.")
|
||||
|
||||
col_name_uni = pick_first(universo, ["Nome", "Name", "Descrizione", "Description", "Security Name", "Instrument Name"])
|
||||
col_cat_uni = pick_first(universo, ["Categoria", "Category", "Classe", "Linea", "Tipo"])
|
||||
col_ac_uni = pick_first(universo, ["Asset Class", "AssetClass", "Classe di Attivo", "Classe Attivo", "Class"])
|
||||
col_name_uni = detect_column(universo, ["Nome", "Name", "Descrizione", "Description", "Security Name", "Instrument Name"])
|
||||
col_cat_uni = detect_column(universo, ["Categoria", "Category", "Classe", "Linea", "Tipo"])
|
||||
col_ac_uni = detect_column(universo, ["Asset Class", "AssetClass", "Classe di Attivo", "Classe Attivo", "Class"])
|
||||
|
||||
isins = (
|
||||
universo[col_isin_uni].astype(str).str.strip()
|
||||
@@ -493,9 +393,9 @@ last_dates = []
|
||||
sql_sp = text(f"EXEC {STORED_PROC} @ISIN = :isin, @n = :n, @PtfCurr = :ptf")
|
||||
|
||||
def detect_cols(df0):
|
||||
col_date = pick_first(df0, ["Date", "Data", "Datetime", "Timestamp", "Time"])
|
||||
col_ret = pick_first(df0, ["Ret", "Return", "Rendimento", "Rend", "LogRet", "r_log", "r", "pct_chg"])
|
||||
col_px = pick_first(df0, ["Close", "AdjClose", "Price", "Px", "Last", "Prezzo", "Chiusura"])
|
||||
col_date = detect_column(df0, ["Date", "Data", "Datetime", "Timestamp", "Time"])
|
||||
col_ret = detect_column(df0, ["Ret", "Return", "Rendimento", "Rend", "LogRet", "r_log", "r", "pct_chg"])
|
||||
col_px = detect_column(df0, ["Close", "AdjClose", "Price", "Px", "Last", "Prezzo", "Chiusura"])
|
||||
return col_date, col_ret, col_px
|
||||
|
||||
ok_count = 0
|
||||
|
||||
35
config/pattern_knn_config.json
Normal file
35
config/pattern_knn_config.json
Normal file
@@ -0,0 +1,35 @@
|
||||
{
|
||||
"db": {
|
||||
"stored_proc": "opt_RendimentoGiornaliero1_ALL",
|
||||
"n_bars": 1305,
|
||||
"ptf_curr": "EUR"
|
||||
},
|
||||
"pattern": {
|
||||
"wp": 60,
|
||||
"ha": 10,
|
||||
"knn_k": 25,
|
||||
"theta": 0.005,
|
||||
"embargo": null
|
||||
},
|
||||
"tagging": {
|
||||
"z_rev": 2.0,
|
||||
"z_vol": 2.0,
|
||||
"std_comp_pct": 0.15
|
||||
},
|
||||
"ranking": {
|
||||
"top_n_max": 15,
|
||||
"rp_max_weight": 0.1333333333
|
||||
},
|
||||
"signals": {
|
||||
"sl_bps": 300.0,
|
||||
"tp_bps": 800.0,
|
||||
"trail_bps": 300.0,
|
||||
"time_stop_bars": 20,
|
||||
"theta_exit": 0.0,
|
||||
"weak_days_exit": null,
|
||||
"max_open": 15,
|
||||
"base_capital_per_strategy": 100.0,
|
||||
"min_trade_notional": 0.01,
|
||||
"risk_parity_lookback": 60
|
||||
}
|
||||
}
|
||||
199
shared_utils.py
Normal file
199
shared_utils.py
Normal file
@@ -0,0 +1,199 @@
|
||||
"""Shared helpers for trading pattern scripts."""
|
||||
from __future__ import annotations
|
||||
|
||||
import json
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Sequence, Tuple
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import pyodbc
|
||||
|
||||
DEFAULT_CONFIG_PATH = Path("config/pattern_knn_config.json")
|
||||
|
||||
|
||||
def load_config(path: Optional[Path] = None) -> Dict:
|
||||
"""Load the JSON configuration that holds operational parameters."""
|
||||
cfg_path = Path(path or DEFAULT_CONFIG_PATH)
|
||||
if not cfg_path.exists():
|
||||
raise FileNotFoundError(f"Missing configuration file: {cfg_path}")
|
||||
with cfg_path.open("r", encoding="utf-8") as fh:
|
||||
return json.load(fh)
|
||||
|
||||
|
||||
def detect_column(df: pd.DataFrame, candidates: Sequence[str]) -> Optional[str]:
|
||||
"""Return the first column whose name matches one of the candidates (case insensitive)."""
|
||||
low = {c.lower(): c for c in df.columns}
|
||||
for cand in candidates:
|
||||
cl = cand.lower()
|
||||
if cl in low:
|
||||
return low[cl]
|
||||
for cand in candidates:
|
||||
cl = cand.lower()
|
||||
for col in df.columns:
|
||||
if cl in col.lower():
|
||||
return col
|
||||
return None
|
||||
|
||||
|
||||
def read_connection_txt(path: Path | str = "connection.txt") -> str:
|
||||
params: Dict[str, str] = {}
|
||||
path = Path(path)
|
||||
if not path.exists():
|
||||
raise FileNotFoundError(f"Missing connection.txt at {path}")
|
||||
for line in path.read_text(encoding="utf-8").splitlines():
|
||||
line = line.strip()
|
||||
if not line or line.startswith("#") or "=" not in line:
|
||||
continue
|
||||
k, v = line.split("=", 1)
|
||||
params[k.strip().lower()] = v.strip()
|
||||
|
||||
username = params.get("username")
|
||||
password = params.get("password")
|
||||
host = params.get("host")
|
||||
port = params.get("port", "1433")
|
||||
database = params.get("database")
|
||||
|
||||
if not all([username, password, host, database]):
|
||||
raise ValueError("connection.txt incompleto: servono username/password/host/database.")
|
||||
|
||||
installed = [d for d in pyodbc.drivers()]
|
||||
driver_q = "ODBC+Driver+18+for+SQL+Server" if "ODBC Driver 18 for SQL Server" in installed else "ODBC+Driver+17+for+SQL+Server"
|
||||
return f"mssql+pyodbc://{username}:{password}@{host}:{port}/{database}?driver={driver_q}"
|
||||
|
||||
|
||||
def z_norm(arr: np.ndarray) -> Optional[np.ndarray]:
|
||||
arr = np.asarray(arr, dtype=float)
|
||||
if arr.size == 0:
|
||||
return None
|
||||
mu = arr.mean()
|
||||
sd = arr.std()
|
||||
if sd < 1e-12:
|
||||
return None
|
||||
return (arr - mu) / (sd + 1e-12)
|
||||
|
||||
|
||||
def build_pattern_library(ret_series: pd.Series, wp: int, ha: int) -> Tuple[Optional[np.ndarray], Optional[np.ndarray]]:
|
||||
x = ret_series.dropna().values
|
||||
n = len(x)
|
||||
if n < wp + ha + 10:
|
||||
return None, None
|
||||
wins: List[np.ndarray] = []
|
||||
outs: List[float] = []
|
||||
for t in range(0, n - wp - ha):
|
||||
win = x[t : t + wp]
|
||||
winzn = z_norm(win)
|
||||
if winzn is None:
|
||||
continue
|
||||
outcome = np.sum(x[t + wp : t + wp + ha])
|
||||
wins.append(winzn)
|
||||
outs.append(outcome)
|
||||
if not wins:
|
||||
return None, None
|
||||
return np.array(wins), np.array(outs)
|
||||
|
||||
|
||||
def predict_from_library(
|
||||
curr_win: np.ndarray,
|
||||
lib_wins: np.ndarray,
|
||||
lib_out: np.ndarray,
|
||||
k: int = 25,
|
||||
) -> Tuple[float, float, np.ndarray]:
|
||||
dists = np.linalg.norm(lib_wins - curr_win, axis=1)
|
||||
idx = np.argsort(dists)[: min(k, len(dists))]
|
||||
return float(np.median(lib_out[idx])), float(np.mean(dists[idx])), idx
|
||||
|
||||
|
||||
def characterize_window(
|
||||
ret_series: pd.Series,
|
||||
wp: int,
|
||||
z_rev: float = 2.0,
|
||||
z_vol: float = 2.0,
|
||||
std_comp_pct: float = 0.15,
|
||||
) -> Tuple[Optional[str], float]:
|
||||
x = ret_series.dropna().values
|
||||
if len(x) < max(wp, 30):
|
||||
return None, 0.0
|
||||
win = x[-wp:]
|
||||
mu, sd = win.mean(), win.std()
|
||||
if sd < 1e-12:
|
||||
return "compression", 0.5
|
||||
|
||||
last = win[-1]
|
||||
z_last = (last - mu) / (sd + 1e-12)
|
||||
abs_z_last = abs(z_last)
|
||||
last3 = win[-3:] if len(win) >= 3 else win
|
||||
sum3 = np.sum(last3)
|
||||
|
||||
if len(x) > 3 * wp:
|
||||
roll_std = pd.Series(x).rolling(wp).std().dropna().values
|
||||
if len(roll_std) > 20:
|
||||
pct = (roll_std < np.std(win)).mean()
|
||||
else:
|
||||
pct = 0.5
|
||||
else:
|
||||
pct = 0.5
|
||||
|
||||
if pct < std_comp_pct:
|
||||
return "compression", float(1.0 - pct)
|
||||
|
||||
if abs(sum3) > 2 * sd / np.sqrt(3) and np.sign(last3).sum() in (3, -3):
|
||||
conf = min(1.0, abs(sum3) / (sd + 1e-12))
|
||||
return "momentum_burst", float(conf)
|
||||
|
||||
mean_prev = np.mean(win[:-1]) if len(win) > 1 else 0.0
|
||||
if abs_z_last >= z_rev and np.sign(last) != np.sign(mean_prev):
|
||||
conf = min(1.0, abs_z_last / 3.0)
|
||||
return "reversal_candidate", float(conf)
|
||||
|
||||
if abs_z_last >= z_vol:
|
||||
conf = min(1.0, abs_z_last / 3.0)
|
||||
return "vol_spike", float(conf)
|
||||
|
||||
return None, 0.0
|
||||
|
||||
|
||||
def hurst_rs(series: pd.Series) -> Optional[float]:
|
||||
x = pd.to_numeric(series.dropna(), errors="coerce").astype(float).values
|
||||
n = len(x)
|
||||
if n < 100:
|
||||
return None
|
||||
x = x - x.mean()
|
||||
z = np.cumsum(x)
|
||||
r = z.max() - z.min()
|
||||
s = x.std(ddof=1)
|
||||
if s <= 0 or r <= 0:
|
||||
return None
|
||||
h = np.log(r / s) / np.log(n)
|
||||
if not np.isfinite(h):
|
||||
return None
|
||||
return float(h)
|
||||
|
||||
|
||||
def build_hurst_map(returns_long: pd.DataFrame, lookback: int = 252) -> Dict[str, float]:
|
||||
if returns_long.empty:
|
||||
return {}
|
||||
ret_wide = returns_long.pivot(index="Date", columns="ISIN", values="Ret").sort_index()
|
||||
hurst_map: Dict[str, float] = {}
|
||||
for isin in ret_wide.columns:
|
||||
series = ret_wide[isin].dropna().astype(float)
|
||||
if len(series) < max(lookback, 100):
|
||||
continue
|
||||
h_val = hurst_rs(series.iloc[-lookback:])
|
||||
if h_val is None or not np.isfinite(h_val):
|
||||
continue
|
||||
hurst_map[str(isin)] = float(h_val)
|
||||
return hurst_map
|
||||
|
||||
|
||||
__all__ = [
|
||||
"build_hurst_map",
|
||||
"build_pattern_library",
|
||||
"characterize_window",
|
||||
"detect_column",
|
||||
"hurst_rs",
|
||||
"load_config",
|
||||
"predict_from_library",
|
||||
"read_connection_txt",
|
||||
"z_norm",
|
||||
]
|
||||
@@ -32,57 +32,77 @@ from typing import Dict, List, Optional, Tuple, Iterable, Set
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from urllib.request import urlopen
|
||||
from urllib.error import URLError, HTTPError
|
||||
from urllib.request import urlopen
|
||||
from urllib.error import URLError, HTTPError
|
||||
|
||||
# DB
|
||||
import sqlalchemy as sa
|
||||
from sqlalchemy import text as sql_text
|
||||
import pyodbc
|
||||
import sqlalchemy as sa
|
||||
from sqlalchemy import text as sql_text
|
||||
|
||||
from shared_utils import (
|
||||
build_hurst_map,
|
||||
build_pattern_library,
|
||||
characterize_window,
|
||||
detect_column,
|
||||
load_config,
|
||||
predict_from_library,
|
||||
read_connection_txt,
|
||||
z_norm,
|
||||
)
|
||||
|
||||
# =========================
|
||||
# CONFIG
|
||||
# =========================
|
||||
BASE_DIR = Path(".")
|
||||
UNIVERSO_XLSX = BASE_DIR / "Universo per Trading System.xlsx"
|
||||
CONNECTION_TXT = BASE_DIR / "connection.txt"
|
||||
AUDIT_LOG_CSV = BASE_DIR / "trades_audit_log.csv"
|
||||
OPEN_TRADES_DIR = BASE_DIR / "open_trades"
|
||||
CONFIG = load_config()
|
||||
DB_CONFIG = CONFIG.get("db", {})
|
||||
PATTERN_CONFIG = CONFIG.get("pattern", {})
|
||||
TAGGING_CONFIG = CONFIG.get("tagging", {})
|
||||
RANKING_CONFIG = CONFIG.get("ranking", {})
|
||||
SIGNALS_CONFIG = CONFIG.get("signals", {})
|
||||
|
||||
BASE_DIR = Path(".")
|
||||
UNIVERSO_XLSX = BASE_DIR / "Universo per Trading System.xlsx"
|
||||
CONNECTION_TXT = BASE_DIR / "connection.txt"
|
||||
AUDIT_LOG_CSV = BASE_DIR / "trades_audit_log.csv"
|
||||
OPEN_TRADES_DIR = BASE_DIR / "open_trades"
|
||||
|
||||
def _dated_signals_filename() -> Path:
|
||||
date_prefix = pd.Timestamp.today().strftime("%Y%m%d")
|
||||
return BASE_DIR / f"{date_prefix}_signals.xlsx"
|
||||
|
||||
# Stored procedure / parametri DB
|
||||
SP_NAME_DEFAULT = "opt_RendimentoGiornaliero1_ALL"
|
||||
SP_N_DEFAULT = 1305
|
||||
PTF_CURR_DEFAULT = "EUR"
|
||||
SP_NAME_DEFAULT = DB_CONFIG.get("stored_proc", "opt_RendimentoGiornaliero1_ALL")
|
||||
SP_N_DEFAULT = DB_CONFIG.get("n_bars", 1305)
|
||||
PTF_CURR_DEFAULT = DB_CONFIG.get("ptf_curr", "EUR")
|
||||
|
||||
# Pattern recognition (come backtest)
|
||||
WP = 60
|
||||
HA = 10
|
||||
KNN_K = 25
|
||||
THETA = 0.005 # 0,005% in decimali (identico al backtest)
|
||||
WP = PATTERN_CONFIG.get("wp", 60)
|
||||
HA = PATTERN_CONFIG.get("ha", 10)
|
||||
KNN_K = PATTERN_CONFIG.get("knn_k", 25)
|
||||
THETA = PATTERN_CONFIG.get("theta", 0.005) # 0,005% in decimali (identico al backtest)
|
||||
Z_REV = TAGGING_CONFIG.get("z_rev", 2.0)
|
||||
Z_VOL = TAGGING_CONFIG.get("z_vol", 2.0)
|
||||
STD_COMP_PCT = TAGGING_CONFIG.get("std_comp_pct", 0.15)
|
||||
|
||||
# Exit rules (identiche al backtest)
|
||||
SL_BPS = 300.0
|
||||
TP_BPS = 800.0
|
||||
TRAIL_BPS = 300.0
|
||||
TIME_STOP_BARS = 20
|
||||
THETA_EXIT = 0.0 # soglia debolezza
|
||||
WEAK_DAYS_EXIT = None # uscita IMMEDIATA in caso di debolezza (come backtest)
|
||||
SL_BPS = SIGNALS_CONFIG.get("sl_bps", 300.0)
|
||||
TP_BPS = SIGNALS_CONFIG.get("tp_bps", 800.0)
|
||||
TRAIL_BPS = SIGNALS_CONFIG.get("trail_bps", 300.0)
|
||||
TIME_STOP_BARS = SIGNALS_CONFIG.get("time_stop_bars", 20)
|
||||
THETA_EXIT = SIGNALS_CONFIG.get("theta_exit", 0.0) # soglia debolezza
|
||||
WEAK_DAYS_EXIT = SIGNALS_CONFIG.get("weak_days_exit") # uscita IMMEDIATA in caso di debolezza (come backtest)
|
||||
|
||||
# Ranking e selezione Top-N per APERTURE
|
||||
MAX_OPEN = 15 # cap strumenti aperti oggi (come backtest)
|
||||
MAX_OPEN = SIGNALS_CONFIG.get("max_open", 15) # cap strumenti aperti oggi (come backtest)
|
||||
|
||||
# Allineamento al backtest v3.1.5 per il cap del Risk Parity
|
||||
TOP_N_MAX = MAX_OPEN
|
||||
RP_MAX_WEIGHT = 2 / TOP_N_MAX # ≈ 0.1333 = 13,33% per singolo asset
|
||||
TOP_N_MAX = RANKING_CONFIG.get("top_n_max", MAX_OPEN)
|
||||
RP_MAX_WEIGHT = RANKING_CONFIG.get("rp_max_weight", 2 / max(TOP_N_MAX, 1)) # ≈ 0.1333 = 13,33% per singolo asset
|
||||
|
||||
# Sizing
|
||||
BASE_CAPITAL_PER_STRATEGY = 100.0
|
||||
MIN_TRADE_NOTIONAL = 0.01
|
||||
RISK_PARITY_LOOKBACK = 60
|
||||
BASE_CAPITAL_PER_STRATEGY = SIGNALS_CONFIG.get("base_capital_per_strategy", 100.0)
|
||||
MIN_TRADE_NOTIONAL = SIGNALS_CONFIG.get("min_trade_notional", 0.01)
|
||||
RISK_PARITY_LOOKBACK = SIGNALS_CONFIG.get("risk_parity_lookback", 60)
|
||||
|
||||
# Calendario
|
||||
BUSINESS_DAYS_ONLY = True
|
||||
@@ -111,37 +131,9 @@ def _safe_to_float(x) -> Optional[float]:
|
||||
except Exception:
|
||||
return None
|
||||
|
||||
# =========================
|
||||
# CONNESSIONE DB
|
||||
# =========================
|
||||
def read_connection_txt(path: Path) -> str:
|
||||
if not path.exists():
|
||||
raise FileNotFoundError(f"Missing connection.txt at {path}")
|
||||
|
||||
params: Dict[str, str] = {}
|
||||
for line in path.read_text(encoding="utf-8").splitlines():
|
||||
line = line.strip()
|
||||
if not line or line.startswith("#") or "=" not in line:
|
||||
continue
|
||||
k, v = line.split("=", 1)
|
||||
params[k.strip().lower()] = v.strip()
|
||||
|
||||
username = params.get("username")
|
||||
password = params.get("password")
|
||||
host = params.get("host")
|
||||
port = params.get("port", "1433")
|
||||
database = params.get("database")
|
||||
|
||||
if not all([username, password, host, database]):
|
||||
raise ValueError("connection.txt incompleto: servono username/password/host/database.")
|
||||
|
||||
installed = [d for d in pyodbc.drivers()]
|
||||
driver_q = "ODBC+Driver+18+for+SQL+Server" if "ODBC Driver 18 for SQL Server" in installed else "ODBC+Driver+17+for+SQL+Server"
|
||||
return f"mssql+pyodbc://{username}:{password}@{host}:{port}/{database}?driver={driver_q}"
|
||||
|
||||
def _db_fetch_returns(conn_str: str,
|
||||
isins: List[str],
|
||||
sp_name: Optional[str] = None,
|
||||
def _db_fetch_returns(conn_str: str,
|
||||
isins: List[str],
|
||||
sp_name: Optional[str] = None,
|
||||
n_bars: Optional[int] = None,
|
||||
ptf_curr: Optional[str] = None) -> pd.DataFrame:
|
||||
engine = sa.create_engine(conn_str, fast_executemany=True)
|
||||
@@ -152,22 +144,11 @@ def _db_fetch_returns(conn_str: str,
|
||||
sql_sp = sql_text(f"EXEC {sp} @ISIN = :isin, @n = :n, @PtfCurr = :ptf")
|
||||
frames: List[pd.DataFrame] = []
|
||||
|
||||
def _pick(df: pd.DataFrame, candidates: List[str]) -> Optional[str]:
|
||||
low = {c.lower(): c for c in df.columns}
|
||||
for c in candidates:
|
||||
if c.lower() in low:
|
||||
return low[c.lower()]
|
||||
for c in df.columns:
|
||||
cl = c.lower()
|
||||
if any(tok in cl for tok in [x.lower() for x in candidates]):
|
||||
return c
|
||||
return None
|
||||
|
||||
with engine.begin() as conn:
|
||||
for i, isin in enumerate(isins, start=1):
|
||||
print(f"[DB] ({i}/{len(isins)}) scarico serie storica per {isin} ...", flush=True)
|
||||
try:
|
||||
df = pd.read_sql_query(sql_sp, conn, params={"isin": str(isin), "n": int(n_val), "ptf": ptf})
|
||||
with engine.begin() as conn:
|
||||
for i, isin in enumerate(isins, start=1):
|
||||
print(f"[DB] ({i}/{len(isins)}) scarico serie storica per {isin} ...", flush=True)
|
||||
try:
|
||||
df = pd.read_sql_query(sql_sp, conn, params={"isin": str(isin), "n": int(n_val), "ptf": ptf})
|
||||
except Exception as e:
|
||||
print(f"[ERROR] SP {sp} fallita per {isin}: {e}")
|
||||
continue
|
||||
@@ -176,11 +157,11 @@ def _db_fetch_returns(conn_str: str,
|
||||
print(f"[WARN] Nessun dato per {isin}")
|
||||
continue
|
||||
|
||||
col_date = _pick(df, ["Date", "Data", "Datetime", "Timestamp", "Time"])
|
||||
col_ret = _pick(df, ["Ret", "Return", "Rendimento", "Rend", "Ret_%", "RET"])
|
||||
if not col_date or not col_ret:
|
||||
print(f"[WARN] Colonne mancanti per {isin}")
|
||||
continue
|
||||
col_date = detect_column(df, ["Date", "Data", "Datetime", "Timestamp", "Time"])
|
||||
col_ret = detect_column(df, ["Ret", "Return", "Rendimento", "Rend", "Ret_%", "RET"])
|
||||
if not col_date or not col_ret:
|
||||
print(f"[WARN] Colonne mancanti per {isin}")
|
||||
continue
|
||||
|
||||
out = df[[col_date, col_ret]].copy()
|
||||
out.columns = ["Date", "Ret"]
|
||||
@@ -278,102 +259,6 @@ def get_open_price(isin: str, universe: pd.DataFrame) -> Optional[float]:
|
||||
# =========================
|
||||
# HURST ESTIMATOR & MAP
|
||||
# =========================
|
||||
from typing import Optional # in cima al file c'è già Optional nei type hints, quindi ok
|
||||
|
||||
def _hurst_rs(series: pd.Series) -> Optional[float]:
|
||||
"""
|
||||
Stima semplice del coefficiente di Hurst tramite Rescaled Range (R/S) su un'unica finestra.
|
||||
Ritorna NaN se la serie è troppo corta o degenerata.
|
||||
"""
|
||||
x = pd.to_numeric(series.dropna(), errors="coerce").astype(float).values
|
||||
n = len(x)
|
||||
if n < 100:
|
||||
return None
|
||||
|
||||
x = x - x.mean()
|
||||
z = np.cumsum(x)
|
||||
R = z.max() - z.min()
|
||||
S = x.std(ddof=1)
|
||||
if S <= 0 or R <= 0:
|
||||
return None
|
||||
|
||||
H = np.log(R / S) / np.log(n)
|
||||
if not np.isfinite(H):
|
||||
return None
|
||||
return float(H)
|
||||
|
||||
|
||||
def build_hurst_map(returns_long: pd.DataFrame,
|
||||
lookback: int = 252) -> Dict[str, float]:
|
||||
"""
|
||||
Costruisce una mappa ISIN -> Hurst usando gli ultimi `lookback` rendimenti.
|
||||
"""
|
||||
if returns_long.empty:
|
||||
return {}
|
||||
|
||||
ret_wide = returns_long.pivot(index="Date", columns="ISIN", values="Ret").sort_index()
|
||||
hurst_map: Dict[str, float] = {}
|
||||
|
||||
for isin in ret_wide.columns:
|
||||
s = ret_wide[isin].dropna().astype(float)
|
||||
if len(s) < max(lookback, 100):
|
||||
continue
|
||||
h = _hurst_rs(s.iloc[-lookback:])
|
||||
if h is None or not np.isfinite(h):
|
||||
continue
|
||||
hurst_map[str(isin)] = float(h)
|
||||
|
||||
return hurst_map
|
||||
|
||||
# =========================
|
||||
# PATTERN RECOGNITION (WP/HA)
|
||||
# =========================
|
||||
def z_norm(arr: np.ndarray) -> Optional[np.ndarray]:
|
||||
arr = np.asarray(arr, dtype=float)
|
||||
mu = arr.mean()
|
||||
sd = arr.std()
|
||||
if sd < 1e-12:
|
||||
return None
|
||||
return (arr - mu) / (sd + 1e-12)
|
||||
|
||||
def build_pattern_library(ret_series: pd.Series, Wp: int, Ha: int) -> Tuple[Optional[np.ndarray], Optional[np.ndarray]]:
|
||||
x = ret_series.dropna().values
|
||||
N = len(x)
|
||||
if N < Wp + Ha + 10:
|
||||
return None, None
|
||||
wins, outs = [], []
|
||||
for t in range(0, N - Wp - Ha):
|
||||
win = x[t:t+Wp]
|
||||
winzn = z_norm(win)
|
||||
if winzn is None:
|
||||
continue
|
||||
outcome = np.sum(x[t+Wp : t+Wp+Ha]) # somma rendimenti futuri su Ha (decimali)
|
||||
wins.append(winzn); outs.append(outcome)
|
||||
if not wins:
|
||||
return None, None
|
||||
return np.array(wins), np.array(outs)
|
||||
|
||||
def predict_from_library(curr_win: np.ndarray,
|
||||
lib_wins: np.ndarray,
|
||||
lib_out: np.ndarray,
|
||||
k: int = 25) -> Tuple[float, float, np.ndarray]:
|
||||
dists = np.linalg.norm(lib_wins - curr_win, axis=1)
|
||||
idx = np.argsort(dists)[:min(k, len(dists))]
|
||||
return float(np.median(lib_out[idx])), float(np.mean(dists[idx])), idx
|
||||
|
||||
def characterize_window(ret_series: pd.Series, Wp: int) -> Tuple[Optional[str], float]:
|
||||
x = ret_series.dropna().values
|
||||
if len(x) < max(WP, 30):
|
||||
return None, 0.0
|
||||
win = x[-Wp:]
|
||||
mu, sd = win.mean(), win.std()
|
||||
if sd < 1e-12:
|
||||
return "compression", 0.5
|
||||
last3 = win[-3:] if len(win) >= 3 else win
|
||||
if np.sign(last3).sum() in (3, -3):
|
||||
return "momentum_burst", min(1.0, abs(last3.sum())/(sd+1e-12))
|
||||
return None, 0.0
|
||||
|
||||
# =========================
|
||||
# GENERAZIONE SEGNALI (EOD su D)
|
||||
# =========================
|
||||
@@ -404,17 +289,17 @@ def generate_signals_today(universe: pd.DataFrame,
|
||||
lib_wins, lib_out = build_pattern_library(r, WP, HA)
|
||||
if lib_wins is None or len(r) < WP + HA:
|
||||
est_out, avg_dist, sig = np.nan, np.nan, 0
|
||||
ptype, pconf = characterize_window(r, WP)
|
||||
ptype, pconf = characterize_window(r, WP, z_rev=Z_REV, z_vol=Z_VOL, std_comp_pct=STD_COMP_PCT)
|
||||
else:
|
||||
curr = r.values[-WP:]
|
||||
curr_zn = z_norm(curr)
|
||||
if curr_zn is None:
|
||||
est_out, avg_dist, sig = np.nan, np.nan, 0
|
||||
ptype, pconf = characterize_window(r, WP)
|
||||
else:
|
||||
est_out, avg_dist, _ = predict_from_library(curr_zn, lib_wins, lib_out, k=KNN_K)
|
||||
sig = 1 if (pd.notna(est_out) and float(est_out) > float(theta_entry)) else 0
|
||||
ptype, pconf = characterize_window(r, WP)
|
||||
if curr_zn is None:
|
||||
est_out, avg_dist, sig = np.nan, np.nan, 0
|
||||
ptype, pconf = characterize_window(r, WP, z_rev=Z_REV, z_vol=Z_VOL, std_comp_pct=STD_COMP_PCT)
|
||||
else:
|
||||
est_out, avg_dist, _ = predict_from_library(curr_zn, lib_wins, lib_out, k=KNN_K)
|
||||
sig = 1 if (pd.notna(est_out) and float(est_out) > float(theta_entry)) else 0
|
||||
ptype, pconf = characterize_window(r, WP, z_rev=Z_REV, z_vol=Z_VOL, std_comp_pct=STD_COMP_PCT)
|
||||
|
||||
rows.append({
|
||||
"Date": decision_date, "ISIN": isin,
|
||||
|
||||
Reference in New Issue
Block a user