unificato output pesi su unico excel
This commit is contained in:
@@ -1,774 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on 22 Oct 2025
|
||||
|
||||
@author: Federico
|
||||
"""
|
||||
|
||||
# =========================
|
||||
# IMPORT & PARAMETRI
|
||||
# =========================
|
||||
import sys
|
||||
import os
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
import yaml
|
||||
import logging
|
||||
|
||||
from sqlalchemy import create_engine, text
|
||||
from sqlalchemy.exc import SQLAlchemyError
|
||||
|
||||
from pypfopt import risk_models
|
||||
from pypfopt.efficient_frontier import EfficientFrontier
|
||||
from pypfopt.exceptions import OptimizationError
|
||||
|
||||
# Cartelle di input/output/plot
|
||||
OUTPUT_DIR = "Output"
|
||||
PLOT_DIR = "Plot"
|
||||
INPUT_DIR = "Input"
|
||||
CONFIG_FILE = "config.yaml"
|
||||
|
||||
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
||||
os.makedirs(PLOT_DIR, exist_ok=True)
|
||||
os.makedirs(INPUT_DIR, exist_ok=True)
|
||||
logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s")
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
def excel_path(filename: str) -> str:
|
||||
"""Costruisce il percorso completo per un file Excel nella cartella di output."""
|
||||
return os.path.join(OUTPUT_DIR, filename)
|
||||
|
||||
def plot_path(filename: str) -> str:
|
||||
"""Costruisce il percorso completo per un file PNG nella cartella Plot."""
|
||||
return os.path.join(PLOT_DIR, filename)
|
||||
|
||||
DEFAULT_VOL_TARGETS = [
|
||||
{"years": 5, "target_vol": 0.06, "name": "VAR3_5Y"},
|
||||
{"years": 1, "target_vol": 0.12, "name": "VAR6_1Y"},
|
||||
{"years": 3, "target_vol": 0.12, "name": "VAR6_3Y"},
|
||||
{"years": 5, "target_vol": 0.12, "name": "VAR6_5Y"},
|
||||
{"years": 5, "target_vol": 0.18, "name": "VAR9_5Y"},
|
||||
]
|
||||
|
||||
DEFAULT_ASSET_CLASS_LIMITS = {
|
||||
'Azionari': 0.75, 'Obbligazionari': 0.75,
|
||||
'Metalli Preziosi': 0.20, 'Materie Prime': 0.05,
|
||||
'Immobiliare': 0.05, 'Criptovalute': 0.05, 'Monetari': 0.1
|
||||
}
|
||||
|
||||
|
||||
def load_targets_and_limits(config_file: str):
|
||||
"""Legge target di volatilità e limiti asset class dal file di configurazione."""
|
||||
try:
|
||||
with open(config_file, "r", encoding="utf-8") as f:
|
||||
cfg = yaml.safe_load(f) or {}
|
||||
except FileNotFoundError:
|
||||
logger.error("File di configurazione mancante: %s", config_file)
|
||||
sys.exit(1)
|
||||
|
||||
vt_cfg = cfg.get("volatility_targets", {})
|
||||
vt_list = []
|
||||
if isinstance(vt_cfg, dict):
|
||||
vt_list = vt_cfg.get("default") or []
|
||||
elif isinstance(vt_cfg, list):
|
||||
vt_list = vt_cfg
|
||||
if not vt_list:
|
||||
logger.error("Sezione 'volatility_targets' mancante o vuota nel file di configurazione.")
|
||||
sys.exit(1)
|
||||
|
||||
volatility_targets_local = {
|
||||
(int(item["years"]), float(item["target_vol"])): item["name"]
|
||||
for item in vt_list
|
||||
if "years" in item and "target_vol" in item and "name" in item
|
||||
}
|
||||
if not volatility_targets_local:
|
||||
logger.error("Nessun target di volatilita valido trovato in configurazione.")
|
||||
sys.exit(1)
|
||||
|
||||
asset_limits_cfg = cfg.get("asset_class_limits") or {}
|
||||
if not asset_limits_cfg:
|
||||
logger.error("Sezione 'asset_class_limits' mancante o vuota nel file di configurazione.")
|
||||
sys.exit(1)
|
||||
asset_class_limits_local = {k: float(v) for k, v in asset_limits_cfg.items()}
|
||||
|
||||
return volatility_targets_local, asset_class_limits_local
|
||||
|
||||
|
||||
def validate_universe(df_universe: pd.DataFrame):
|
||||
"""Verifica colonne obbligatorie e duplicati ISIN nel file universo."""
|
||||
required_cols = ['ISIN', 'Nome', 'Categoria', 'Asset Class']
|
||||
missing_cols = [c for c in required_cols if c not in df_universe.columns]
|
||||
if missing_cols:
|
||||
logger.error("Colonne mancanti nel file universo: %s", ", ".join(missing_cols))
|
||||
sys.exit(1)
|
||||
dup_isin = df_universe['ISIN'][df_universe['ISIN'].duplicated()].unique().tolist()
|
||||
if dup_isin:
|
||||
logger.warning("ISIN duplicati nel file universo: %s", dup_isin)
|
||||
empty_isin = df_universe['ISIN'].isna().sum()
|
||||
if empty_isin:
|
||||
logger.warning("Righe con ISIN mancante nel file universo: %d", int(empty_isin))
|
||||
|
||||
|
||||
def validate_returns_frame(df_returns: pd.DataFrame, threshold: float = 0.2):
|
||||
"""Avvisa se i rendimenti hanno molte celle NaN prima del riempimento."""
|
||||
if df_returns.empty:
|
||||
logger.error("Nessun dato di rendimento recuperato: final_df vuoto.")
|
||||
sys.exit(1)
|
||||
na_ratio = df_returns.isna().mean()
|
||||
high_na = na_ratio[na_ratio > threshold]
|
||||
if not high_na.empty:
|
||||
logger.warning(
|
||||
"Colonne con >%.0f%% di NaN prima del fill: %s",
|
||||
threshold * 100,
|
||||
", ".join([f"{c} ({v:.0%})" for c, v in high_na.items()])
|
||||
)
|
||||
|
||||
# ---------------------------------
|
||||
# Utility per R^2 sull’equity line
|
||||
# ---------------------------------
|
||||
def r2_equity_line(returns: pd.Series) -> float:
|
||||
"""R^2 della regressione OLS di log(equity) sul tempo (con intercetta)."""
|
||||
s = returns.dropna()
|
||||
if s.size < 3:
|
||||
return np.nan
|
||||
equity = (1.0 + s).cumprod()
|
||||
equity = equity.replace([0, np.inf, -np.inf], np.nan).dropna()
|
||||
if equity.size < 3:
|
||||
return np.nan
|
||||
y = np.log(equity.values)
|
||||
if np.allclose(y.var(ddof=1), 0.0):
|
||||
return 0.0
|
||||
x = np.arange(y.size, dtype=float)
|
||||
X = np.column_stack([np.ones_like(x), x])
|
||||
beta, *_ = np.linalg.lstsq(X, y, rcond=None)
|
||||
y_hat = X @ beta
|
||||
ss_res = np.sum((y - y_hat) ** 2)
|
||||
ss_tot = np.sum((y - y.mean()) ** 2)
|
||||
r2 = 1.0 - (ss_res / ss_tot) if ss_tot > 0 else np.nan
|
||||
if np.isnan(r2):
|
||||
return np.nan
|
||||
return float(np.clip(r2, 0.0, 1.0))
|
||||
|
||||
# ---------------------------------
|
||||
# Utility per metriche di drawdown
|
||||
# ---------------------------------
|
||||
def drawdown_metrics(returns: pd.Series, sentinel_ttr: int = 1250):
|
||||
"""
|
||||
Calcola:
|
||||
- max_dd: profondità massima del drawdown (negativa o zero)
|
||||
- max_dd_duration: durata massima (in giorni) di qualsiasi drawdown
|
||||
- ttr_from_mdd: giorni dal minimo del Max DD al pieno recupero del picco precedente (sentinel se non recupera)
|
||||
"""
|
||||
s = returns.fillna(0.0).astype(float)
|
||||
if s.size == 0:
|
||||
return np.nan, np.nan, np.nan
|
||||
|
||||
equity = (1.0 + s).cumprod()
|
||||
if equity.size == 0:
|
||||
return np.nan, np.nan, np.nan
|
||||
|
||||
run_max = equity.cummax()
|
||||
dd = equity / run_max - 1.0
|
||||
|
||||
# Max Drawdown (valore più negativo)
|
||||
max_dd = float(dd.min()) if dd.size else np.nan
|
||||
|
||||
# Durata massima di drawdown (giorni consecutivi sotto zero drawdown)
|
||||
under_water = dd < 0
|
||||
if under_water.any():
|
||||
max_dd_duration = 0
|
||||
current = 0
|
||||
for flag in under_water.values:
|
||||
if flag:
|
||||
current += 1
|
||||
if current > max_dd_duration:
|
||||
max_dd_duration = current
|
||||
else:
|
||||
current = 0
|
||||
else:
|
||||
max_dd_duration = 0
|
||||
|
||||
# Time-to-Recovery dal Max DD
|
||||
if dd.size:
|
||||
trough_idx = int(np.argmin(dd.values))
|
||||
if trough_idx > 0:
|
||||
peak_idx = int(np.argmax(equity.values[:trough_idx+1]))
|
||||
peak_level = float(equity.values[peak_idx])
|
||||
rec_idx = None
|
||||
for t in range(trough_idx + 1, equity.size):
|
||||
if equity.values[t] >= peak_level:
|
||||
rec_idx = t
|
||||
break
|
||||
if rec_idx is None:
|
||||
ttr_from_mdd = sentinel_ttr # non recuperato
|
||||
else:
|
||||
ttr_from_mdd = rec_idx - trough_idx
|
||||
else:
|
||||
ttr_from_mdd = np.nan
|
||||
else:
|
||||
ttr_from_mdd = np.nan
|
||||
|
||||
return max_dd, int(max_dd_duration), (int(ttr_from_mdd) if not np.isnan(ttr_from_mdd) else np.nan)
|
||||
|
||||
# ---------------------------------
|
||||
# Utility per AAW, AUW e Heal Index
|
||||
# ---------------------------------
|
||||
def heal_index_metrics(returns: pd.Series):
|
||||
"""
|
||||
Calcola:
|
||||
- AAW: area sopra acqua (run-up vs minimo cumulato)
|
||||
- AUW: area sotto acqua (drawdown vs massimo cumulato)
|
||||
- Heal Index: (AAW - AUW) / AUW
|
||||
"""
|
||||
s = returns.fillna(0.0).astype(float)
|
||||
if s.size == 0:
|
||||
return np.nan, np.nan, np.nan
|
||||
|
||||
equity = (1.0 + s).cumprod()
|
||||
if equity.size == 0:
|
||||
return np.nan, np.nan, np.nan
|
||||
|
||||
run_max = equity.cummax()
|
||||
dd = equity / run_max - 1.0
|
||||
AUW = float((-dd[dd < 0]).sum()) if dd.size else np.nan
|
||||
|
||||
run_min = equity.cummin()
|
||||
ru = equity / run_min - 1.0
|
||||
AAW = float((ru[ru > 0]).sum()) if ru.size else np.nan
|
||||
|
||||
heal = ((AAW - AUW) / AUW) if (AUW is not None and np.isfinite(AUW) and AUW > 0) else np.nan
|
||||
return AAW, AUW, heal
|
||||
|
||||
# ---------------------------------
|
||||
# Utility per H_min (100% finestre positive)
|
||||
# ---------------------------------
|
||||
def h_min_100(returns: pd.Series, month_len: int = 21):
|
||||
"""
|
||||
Orizzonte minimo h_days tale che TUTTE le finestre rolling di ampiezza h_days
|
||||
hanno rendimento cumulato >= 0. Restituisce (h_days, ceil(h_days/21)).
|
||||
"""
|
||||
s = returns.dropna().astype(float)
|
||||
n = s.size
|
||||
if n == 0:
|
||||
return np.nan, np.nan
|
||||
|
||||
log1p = np.log1p(s.values)
|
||||
csum = np.cumsum(log1p)
|
||||
|
||||
def rolling_sum_k(k: int):
|
||||
if k > n:
|
||||
return np.array([])
|
||||
head = csum[k - 1:]
|
||||
tail = np.concatenate(([0.0], csum[:-k]))
|
||||
return head - tail
|
||||
|
||||
for k in range(1, n + 1):
|
||||
rs = rolling_sum_k(k)
|
||||
if rs.size == 0:
|
||||
break
|
||||
roll_ret = np.exp(rs) - 1.0
|
||||
if np.all(roll_ret >= 0):
|
||||
h_days = k
|
||||
h_months = int(np.ceil(h_days / month_len))
|
||||
return h_days, h_months
|
||||
|
||||
return np.nan, np.nan
|
||||
|
||||
# ---------------------------------
|
||||
# Utility di serie portafoglio e metriche path-based
|
||||
# ---------------------------------
|
||||
def portfolio_series_from_weights(period_df: pd.DataFrame, w: np.ndarray, cols: list) -> pd.Series:
|
||||
w_series = pd.Series(w, index=cols)
|
||||
return (period_df[cols] * w_series).sum(axis=1)
|
||||
|
||||
def portfolio_path_metrics(period_df: pd.DataFrame,
|
||||
five_year_df: pd.DataFrame,
|
||||
w: np.ndarray,
|
||||
cols: list,
|
||||
days_per_year: int) -> dict:
|
||||
"""Metriche path-based del portafoglio su period_df + H_min_100m su 5Y."""
|
||||
w = np.asarray(w, dtype=float)
|
||||
cols = list(cols)
|
||||
|
||||
port_returns = portfolio_series_from_weights(period_df, w, cols)
|
||||
|
||||
n_days = int(port_returns.shape[0])
|
||||
years_elapsed = n_days / days_per_year if n_days > 0 else np.nan
|
||||
|
||||
ann_return = float(port_returns.mean() * days_per_year) if n_days > 0 else np.nan
|
||||
ann_vol = float(port_returns.std(ddof=1) * np.sqrt(days_per_year)) if n_days > 1 else np.nan
|
||||
|
||||
gross = float((1.0 + port_returns).prod()) if n_days > 0 else np.nan
|
||||
if years_elapsed and years_elapsed > 0 and gross and gross > 0:
|
||||
cagr = gross**(1.0 / years_elapsed) - 1.0
|
||||
else:
|
||||
cagr = np.nan
|
||||
|
||||
r2 = r2_equity_line(port_returns)
|
||||
maxdd, dddur, ttr = drawdown_metrics(port_returns, sentinel_ttr=1250)
|
||||
aaw, auw, heal = heal_index_metrics(port_returns)
|
||||
|
||||
common_cols = [c for c in cols if c in five_year_df.columns]
|
||||
if len(common_cols) > 0:
|
||||
w5 = pd.Series(w, index=cols).reindex(common_cols).fillna(0.0).values
|
||||
port_returns_5y = portfolio_series_from_weights(five_year_df, w5, common_cols)
|
||||
_, hmin_5y_months = h_min_100(port_returns_5y, month_len=21)
|
||||
else:
|
||||
hmin_5y_months = np.nan
|
||||
|
||||
return {
|
||||
"AnnReturn": ann_return,
|
||||
"AnnVol": ann_vol,
|
||||
"CAGR": cagr,
|
||||
"R2": r2,
|
||||
"MaxDD": maxdd,
|
||||
"DD_Duration": dddur,
|
||||
"TTR": ttr,
|
||||
"AAW": aaw,
|
||||
"AUW": auw,
|
||||
"Heal": heal,
|
||||
"Hmin_100m_5Y": hmin_5y_months
|
||||
}
|
||||
|
||||
# --- Lettura parametri dal file connection.txt ---
|
||||
params = {}
|
||||
with open("connection.txt", "r") as f:
|
||||
for line in f:
|
||||
line = line.strip()
|
||||
if line and not line.startswith("#"):
|
||||
key, value = line.split("=", 1)
|
||||
params[key.strip()] = value.strip()
|
||||
|
||||
username = params.get("username")
|
||||
password = params.get("password")
|
||||
host = params.get("host")
|
||||
port = params.get("port", "1433")
|
||||
database = params.get("database")
|
||||
|
||||
connection_string = (
|
||||
f"mssql+pyodbc://{username}:{password}@{host}:{port}/{database}"
|
||||
"?driver=ODBC+Driver+17+for+SQL+Server"
|
||||
)
|
||||
|
||||
print("Connection string letta correttamente")
|
||||
|
||||
# =========================
|
||||
# CONNESSIONE AL DB
|
||||
# =========================
|
||||
try:
|
||||
engine = create_engine(connection_string)
|
||||
with engine.connect() as connection:
|
||||
_ = connection.execute(text("SELECT 1"))
|
||||
print("Connessione al database riuscita.")
|
||||
except SQLAlchemyError as e:
|
||||
print("Errore durante la connessione al database:", e)
|
||||
sys.exit()
|
||||
|
||||
# =========================
|
||||
# INPUT / TEMPLATE
|
||||
# =========================
|
||||
template_path = os.path.join(INPUT_DIR, 'Template_Guardian.xls')
|
||||
template_df = pd.read_excel(template_path)
|
||||
|
||||
file_path = os.path.join(INPUT_DIR, 'Universo per ottimizzatore v.2.4.xlsx')
|
||||
df = pd.read_excel(
|
||||
file_path,
|
||||
usecols=['ISIN', 'Nome', 'Categoria', 'Asset Class', 'PesoMax', 'PesoFisso', 'Codice Titolo'],
|
||||
dtype={'Codice Titolo': str}
|
||||
)
|
||||
validate_universe(df)
|
||||
|
||||
# =========================
|
||||
# SERIE STORICHE RENDIMENTI
|
||||
# =========================
|
||||
end_date = pd.Timestamp.now().normalize() - pd.Timedelta(days=1)
|
||||
start_date = end_date - pd.DateOffset(years=5)
|
||||
all_dates = pd.date_range(start=start_date, end=end_date, freq='B').normalize()
|
||||
|
||||
final_df = pd.DataFrame(index=all_dates)
|
||||
|
||||
isin_from_db = set()
|
||||
for isin in df['ISIN'].unique():
|
||||
print(f"Working on ISIN: {isin}")
|
||||
procedure_call = f"EXEC opt_RendimentoGiornaliero1_ALL @ISIN = '{isin}', @n = 1305, @PtfCurr = EUR"
|
||||
try:
|
||||
temp_df = pd.read_sql_query(procedure_call, engine)
|
||||
if temp_df.empty:
|
||||
print(f"Nessun dato recuperato per {isin}, skipping...")
|
||||
continue
|
||||
temp_df['Px_Date'] = pd.to_datetime(temp_df['Px_Date'], format='%Y-%m-%d', errors='coerce').dt.normalize()
|
||||
temp_df = temp_df.dropna(subset=['Px_Date'])
|
||||
temp_df.set_index('Px_Date', inplace=True)
|
||||
temp_df['RendimentoGiornaliero'] = temp_df['RendimentoGiornaliero'] / 100
|
||||
final_df[isin] = temp_df['RendimentoGiornaliero'].reindex(all_dates)
|
||||
isin_from_db.add(isin)
|
||||
print(f"Dati recuperati per {isin}: {final_df[isin].count()} righe di dati non-null prelevate.")
|
||||
except SQLAlchemyError as e:
|
||||
print(f"Errore durante l'esecuzione della stored procedure per {isin}:", e)
|
||||
|
||||
validate_returns_frame(final_df)
|
||||
final_df.fillna(0, inplace=True)
|
||||
|
||||
# -------- H_min sempre su 5 anni (21 gg = 1 mese) --------
|
||||
five_year_df = final_df.loc[end_date - pd.DateOffset(years=5): end_date]
|
||||
|
||||
# =========================
|
||||
# CONFIGURAZIONE OBIETTIVI
|
||||
# =========================
|
||||
volatility_targets, asset_class_limits = load_targets_and_limits(CONFIG_FILE)
|
||||
days_per_year = 252
|
||||
riskfree_rate = 0.02
|
||||
|
||||
# =========================
|
||||
# LOOP OTTIMIZZAZIONI (PH1 tradizionale)
|
||||
# =========================
|
||||
optimized_weights = pd.DataFrame()
|
||||
per_asset_metrics = {}
|
||||
|
||||
for (years, target_vol), name in volatility_targets.items():
|
||||
period_start_date = end_date - pd.DateOffset(years=years)
|
||||
period_df = final_df.loc[period_start_date:end_date]
|
||||
|
||||
daily_returns_mean = period_df.mean()
|
||||
annual_returns_mean = daily_returns_mean * days_per_year
|
||||
annual_covariance_matrix = risk_models.sample_cov(period_df, returns_data=True)
|
||||
|
||||
# ---------- PER-ASSET METRICS ----------
|
||||
n_days = int(period_df.shape[0])
|
||||
years_elapsed = n_days / days_per_year if n_days > 0 else np.nan
|
||||
|
||||
asset_ann_return = daily_returns_mean * days_per_year
|
||||
asset_ann_vol = period_df.std(ddof=1) * np.sqrt(days_per_year)
|
||||
|
||||
gross = (1.0 + period_df).prod(skipna=True)
|
||||
asset_cagr = gross.pow(1.0 / years_elapsed) - 1.0 if years_elapsed and years_elapsed > 0 else pd.Series(np.nan, index=period_df.columns)
|
||||
|
||||
asset_r2 = pd.Series({col: r2_equity_line(period_df[col]) for col in period_df.columns}, index=period_df.columns)
|
||||
|
||||
maxdd_dict, dddur_dict, ttr_dict = {}, {}, {}
|
||||
aaw_dict, auw_dict, heal_dict = {}, {}, {}
|
||||
hmin_5y_months_dict = {}
|
||||
|
||||
for col in period_df.columns:
|
||||
mdd, dddur, ttr = drawdown_metrics(period_df[col], sentinel_ttr=1250)
|
||||
maxdd_dict[col], dddur_dict[col], ttr_dict[col] = mdd, dddur, ttr
|
||||
aaw, auw, heal = heal_index_metrics(period_df[col])
|
||||
aaw_dict[col], auw_dict[col], heal_dict[col] = aaw, auw, heal
|
||||
if col in five_year_df.columns:
|
||||
_, h_months_5y = h_min_100(five_year_df[col], month_len=21)
|
||||
else:
|
||||
h_months_5y = np.nan
|
||||
hmin_5y_months_dict[col] = h_months_5y
|
||||
|
||||
asset_metrics_df = (
|
||||
pd.DataFrame({
|
||||
'ISIN': period_df.columns,
|
||||
'Rendimento_Ann': asset_ann_return.reindex(period_df.columns).values,
|
||||
'Volatilita_Ann': asset_ann_vol.reindex(period_df.columns).values,
|
||||
'CAGR': asset_cagr.reindex(period_df.columns).values,
|
||||
'R2_Equity': asset_r2.reindex(period_df.columns).values,
|
||||
'MaxDD': pd.Series(maxdd_dict).reindex(period_df.columns).values,
|
||||
'DD_Duration_Max': pd.Series(dddur_dict).reindex(period_df.columns).values,
|
||||
'TTR_from_MDD': pd.Series(ttr_dict).reindex(period_df.columns).values,
|
||||
'AAW': pd.Series(aaw_dict).reindex(period_df.columns).values,
|
||||
'AUW': pd.Series(auw_dict).reindex(period_df.columns).values,
|
||||
'Heal_Index': pd.Series(heal_dict).reindex(period_df.columns).values,
|
||||
'H_min_100m_5Y': pd.Series(hmin_5y_months_dict).reindex(period_df.columns).values
|
||||
})
|
||||
.merge(df[['ISIN', 'Nome', 'Categoria', 'Asset Class']], on='ISIN', how='left')
|
||||
[['ISIN', 'Nome', 'Categoria', 'Asset Class',
|
||||
'Rendimento_Ann', 'Volatilita_Ann', 'CAGR', 'R2_Equity',
|
||||
'MaxDD', 'DD_Duration_Max', 'TTR_from_MDD',
|
||||
'AAW', 'AUW', 'Heal_Index', 'H_min_100m_5Y']]
|
||||
.sort_values('ISIN', kind='stable')
|
||||
.reset_index(drop=True)
|
||||
)
|
||||
per_asset_metrics[name] = asset_metrics_df
|
||||
|
||||
# ---------- OTTIMIZZAZIONE ----------
|
||||
ef = EfficientFrontier(annual_returns_mean, annual_covariance_matrix)
|
||||
|
||||
# Vincoli PesoFisso / PesoMax
|
||||
for _, row in df.iterrows():
|
||||
isin_i = row['ISIN']
|
||||
if isin_i in period_df.columns:
|
||||
idx = period_df.columns.get_loc(isin_i)
|
||||
pf = row.get('PesoFisso')
|
||||
pm = row.get('PesoMax')
|
||||
if pd.notna(pf):
|
||||
ef.add_constraint(lambda w, idx=idx, val=pf: w[idx] == val)
|
||||
elif pd.notna(pm):
|
||||
ef.add_constraint(lambda w, idx=idx, maxw=pm: w[idx] <= maxw)
|
||||
|
||||
# Vincoli per Categoria
|
||||
categories_limits = df.groupby('Categoria')['PesoMax'].max().to_dict()
|
||||
for cat, maxw in categories_limits.items():
|
||||
isin_list = df[df['Categoria'] == cat]['ISIN'].tolist()
|
||||
idxs = [period_df.columns.get_loc(isin) for isin in isin_list if isin in period_df.columns]
|
||||
if idxs:
|
||||
ef.add_constraint(lambda w, idxs=idxs, maxw=maxw: sum(w[i] for i in idxs) <= maxw)
|
||||
|
||||
# Vincoli per Asset Class
|
||||
for ac, maxw in asset_class_limits.items():
|
||||
isin_list = df[df['Asset Class'] == ac]['ISIN'].tolist()
|
||||
idxs = [period_df.columns.get_loc(isin) for isin in isin_list if isin in period_df.columns]
|
||||
if idxs:
|
||||
ef.add_constraint(lambda w, idxs=idxs, maxw=maxw: sum(w[i] for i in idxs) <= maxw)
|
||||
|
||||
# ---------- Risoluzione ----------
|
||||
try:
|
||||
ef.efficient_risk(target_volatility=target_vol)
|
||||
weights = ef.clean_weights()
|
||||
optimized_weights[name] = pd.Series(weights)
|
||||
exp_ret, exp_vol, sharpe = ef.portfolio_performance(verbose=False, risk_free_rate=riskfree_rate)
|
||||
|
||||
print(f"=== Ottimizzazione: {name} (anni={years}, target_vol={target_vol}) ===")
|
||||
print(f"Expected annual return: {exp_ret:.2%}")
|
||||
print(f"Annual volatility: {exp_vol:.2%}")
|
||||
print(f"Sharpe Ratio: {sharpe:.2f}")
|
||||
|
||||
# --- Beneficio di diversificazione ---
|
||||
w_vec_tmp = np.array([weights.get(isin, 0) for isin in period_df.columns])
|
||||
indiv_ann_vols = np.sqrt(np.diag(annual_covariance_matrix.loc[period_df.columns, period_df.columns].values))
|
||||
weighted_avg_vol = float(np.dot(w_vec_tmp, indiv_ann_vols))
|
||||
diversification_benefit = (exp_vol / weighted_avg_vol) - 1 if (weighted_avg_vol > 0 and exp_vol > 0) else np.nan
|
||||
print(f"Beneficio di diversificazione: {diversification_benefit:.2%}")
|
||||
|
||||
# --- File Excel per import gestionale (uno per portafoglio) ---
|
||||
template_cols = list(template_df.columns)
|
||||
results_rows = []
|
||||
for isin, weight in weights.items():
|
||||
if weight > 0:
|
||||
r_sel = df.loc[df['ISIN'] == isin]
|
||||
codice_titolo = r_sel['Codice Titolo'].iloc[0] if not r_sel.empty else ""
|
||||
nome = r_sel['Nome'].iloc[0] if not r_sel.empty else ""
|
||||
row = {col: "" for col in template_cols}
|
||||
row['cod_por'] = f'PTFOPT{name}'
|
||||
row['cod_tit'] = codice_titolo
|
||||
row['des_tit'] = nome
|
||||
row['peso'] = float(weight * 99)
|
||||
results_rows.append(row)
|
||||
|
||||
results_full_df = pd.DataFrame(results_rows, columns=template_cols)
|
||||
if results_full_df.empty:
|
||||
output_df = template_df.iloc[0:0].copy()
|
||||
else:
|
||||
output_df = results_full_df.reindex(columns=template_cols)
|
||||
output_file_path = excel_path(f'PTFOPT{name}.xlsx')
|
||||
output_df.to_excel(output_file_path, index=False)
|
||||
print(f"File {output_file_path} saved successfully.")
|
||||
|
||||
# --- Pie chart asset allocation (se ci sono pesi > 0) ---
|
||||
asset_allocations = {asset: 0 for asset in asset_class_limits}
|
||||
for isin, weight in weights.items():
|
||||
r_sel = df.loc[df['ISIN'] == isin]
|
||||
if r_sel.empty:
|
||||
continue
|
||||
asset_allocations.setdefault(r_sel['Asset Class'].iloc[0], 0)
|
||||
asset_allocations[r_sel['Asset Class'].iloc[0]] += weight
|
||||
|
||||
if sum(asset_allocations.values()) > 0:
|
||||
plt.figure(figsize=(8, 6))
|
||||
plt.pie(asset_allocations.values(), labels=asset_allocations.keys(), autopct='%1.1f%%')
|
||||
plt.title(f'Asset Allocation for {name}')
|
||||
pie_path = plot_path(f'Asset_Allocation_{name}.png')
|
||||
if os.path.exists(pie_path):
|
||||
os.remove(pie_path)
|
||||
plt.savefig(pie_path, dpi=150, bbox_inches='tight')
|
||||
plt.close()
|
||||
|
||||
except OptimizationError as e:
|
||||
print(f"Optimization failed for {name}: {e}")
|
||||
optimized_weights[name] = pd.Series([0] * len(annual_returns_mean))
|
||||
|
||||
# =========================
|
||||
# RIEPILOGO METRICHE (PORTAFOGLI PH1)
|
||||
# =========================
|
||||
summary_data = []
|
||||
for (years, target_vol), name in volatility_targets.items():
|
||||
if name in optimized_weights.columns:
|
||||
period_start_date = end_date - pd.DateOffset(years=years)
|
||||
period_df = final_df.loc[period_start_date:end_date]
|
||||
|
||||
daily_returns_mean = period_df.mean()
|
||||
annual_returns_mean = daily_returns_mean * days_per_year
|
||||
annual_covariance_matrix = risk_models.sample_cov(period_df, returns_data=True)
|
||||
|
||||
w_series = optimized_weights[name].reindex(period_df.columns).fillna(0.0)
|
||||
w_vec = w_series.values
|
||||
|
||||
port_returns = (period_df[period_df.columns] * w_series).sum(axis=1)
|
||||
n_days = int(port_returns.shape[0])
|
||||
years_elapsed = n_days / days_per_year if n_days > 0 else np.nan
|
||||
port_ann_return = float(port_returns.mean() * days_per_year) if n_days > 0 else np.nan
|
||||
port_ann_vol = float(port_returns.std(ddof=1) * np.sqrt(days_per_year)) if n_days > 1 else np.nan
|
||||
gross = float((1.0 + port_returns).prod()) if n_days > 0 else np.nan
|
||||
port_cagr = (gross**(1.0 / years_elapsed) - 1.0) if (years_elapsed and years_elapsed > 0 and gross and gross > 0) else np.nan
|
||||
|
||||
port_r2 = r2_equity_line(port_returns)
|
||||
port_maxdd, port_dddur, port_ttr = drawdown_metrics(port_returns, sentinel_ttr=1250)
|
||||
port_aaw, port_auw, port_heal = heal_index_metrics(port_returns)
|
||||
|
||||
common_cols = [c for c in w_series.index if c in five_year_df.columns]
|
||||
if len(common_cols) > 0:
|
||||
w_5y = w_series.reindex(common_cols).fillna(0.0)
|
||||
port_returns_5y = (five_year_df[common_cols] * w_5y).sum(axis=1)
|
||||
_, port_hmin_5y_months = h_min_100(port_returns_5y, month_len=21)
|
||||
else:
|
||||
port_hmin_5y_months = np.nan
|
||||
|
||||
exp_ret = float(np.dot(w_vec, annual_returns_mean.loc[period_df.columns].values))
|
||||
cov_mat = annual_covariance_matrix.loc[period_df.columns, period_df.columns].values
|
||||
exp_vol = float(np.sqrt(np.dot(w_vec, np.dot(cov_mat, w_vec))))
|
||||
sharpe = (exp_ret - riskfree_rate) / exp_vol if exp_vol > 0 else np.nan
|
||||
|
||||
indiv_ann_vols = np.sqrt(np.diag(cov_mat))
|
||||
weighted_avg_vol = float(np.dot(w_vec, indiv_ann_vols))
|
||||
diversification_benefit = (exp_vol / weighted_avg_vol) - 1 if (weighted_avg_vol > 0 and exp_vol > 0) else np.nan
|
||||
diversification_ratio = weighted_avg_vol / exp_vol if (weighted_avg_vol > 0 and exp_vol > 0) else np.nan
|
||||
|
||||
print(f"=== Riepilogo: {name} (anni={years}, target_vol={target_vol}) ===")
|
||||
print(f"Expected annual return: {exp_ret:.2%}")
|
||||
print(f"Annual volatility: {exp_vol:.2%}")
|
||||
print(f"Sharpe Ratio: {sharpe:.2f}")
|
||||
print(f"Diversification Ratio: {diversification_ratio:.3f}" if not np.isnan(diversification_ratio) else "Diversification Ratio: NaN")
|
||||
print(f"Beneficio di diversificazione: {diversification_benefit:.2%}")
|
||||
|
||||
summary_data.append({
|
||||
"Portafoglio": name,
|
||||
"Years": years,
|
||||
"Target Vol": f"{target_vol:.2%}",
|
||||
"Expected annual return": f"{exp_ret:.2%}",
|
||||
"Annual volatility": f"{exp_vol:.2%}",
|
||||
"Sharpe Ratio": f"{sharpe:.2f}",
|
||||
"Beneficio di diversificazione": f"{diversification_benefit:.2%}" if not np.isnan(diversification_benefit) else "",
|
||||
"Rendimento_Ann": f"{port_ann_return:.2%}" if pd.notna(port_ann_return) else "",
|
||||
"Volatilita_Ann": f"{port_ann_vol:.2%}" if pd.notna(port_ann_vol) else "",
|
||||
"CAGR": f"{port_cagr:.2%}" if pd.notna(port_cagr) else "",
|
||||
"R2_Equity": round(port_r2, 3) if pd.notna(port_r2) else np.nan,
|
||||
"MaxDD": f"{port_maxdd:.2%}" if pd.notna(port_maxdd) else "",
|
||||
"DD_Duration_Max": int(port_dddur) if pd.notna(port_dddur) else "",
|
||||
"TTR_from_MDD": int(port_ttr) if pd.notna(port_ttr) else "",
|
||||
"AAW": float(port_aaw) if pd.notna(port_aaw) else np.nan,
|
||||
"AUW": float(port_auw) if pd.notna(port_auw) else np.nan,
|
||||
"Heal_Index": float(port_heal) if pd.notna(port_heal) else np.nan,
|
||||
"H_min_100m_5Y": int(port_hmin_5y_months) if pd.notna(port_hmin_5y_months) else ""
|
||||
})
|
||||
|
||||
# =========================
|
||||
# PLOT EQUITY/UNDERWATER (PH1)
|
||||
# =========================
|
||||
def plot_equity_overlay_all(port_names=None):
|
||||
if port_names is None:
|
||||
port_names = ['VAR3_5Y', 'VAR6_1Y', 'VAR6_3Y', 'VAR6_5Y', 'VAR9_5Y']
|
||||
period_start_date = end_date - pd.DateOffset(years=5)
|
||||
period_df = final_df.loc[period_start_date:end_date]
|
||||
available_cols = set(optimized_weights.columns)
|
||||
plotted = 0
|
||||
plt.figure(figsize=(11, 6))
|
||||
for pname in port_names:
|
||||
if pname not in available_cols:
|
||||
print(f"[plot] Portafoglio '{pname}' non trovato in optimized_weights. Skipping.")
|
||||
continue
|
||||
w_series = optimized_weights[pname].reindex(period_df.columns).fillna(0.0)
|
||||
port_returns = (period_df[w_series.index] * w_series).sum(axis=1)
|
||||
equity = (1.0 + port_returns).cumprod()
|
||||
plt.plot(equity.index, equity.values, label=pname)
|
||||
plotted += 1
|
||||
if plotted == 0:
|
||||
print("[plot] Nessun portafoglio valido da plottare.")
|
||||
plt.close()
|
||||
return
|
||||
plt.title("Equity line - Portafogli ottimizzati (ultimi 5 anni)")
|
||||
plt.xlabel("Data")
|
||||
plt.ylabel("Equity (base=1.0)")
|
||||
plt.grid(True, alpha=0.3)
|
||||
plt.legend(loc="best")
|
||||
plt.tight_layout()
|
||||
out_png = plot_path("Equity_ALL_PORTS.png")
|
||||
if os.path.exists(out_png):
|
||||
os.remove(out_png)
|
||||
plt.savefig(out_png, dpi=150, bbox_inches='tight')
|
||||
plt.close()
|
||||
print(f"[plot] Grafico sovrapposto salvato: {out_png}")
|
||||
|
||||
def plot_underwater_overlay_all(port_names=None, ylim=(-0.3, 0.0)):
|
||||
if port_names is None:
|
||||
port_names = ['VAR3_5Y', 'VAR6_1Y', 'VAR6_3Y', 'VAR6_5Y', 'VAR9_5Y']
|
||||
period_start_date = end_date - pd.DateOffset(years=5)
|
||||
period_df = final_df.loc[period_start_date:end_date]
|
||||
available_cols = set(optimized_weights.columns)
|
||||
plotted = 0
|
||||
plt.figure(figsize=(11, 6))
|
||||
for pname in port_names:
|
||||
if pname not in available_cols:
|
||||
print(f"[underwater] Portafoglio '{pname}' non trovato in optimized_weights. Skipping.")
|
||||
continue
|
||||
w_series = optimized_weights[pname].reindex(period_df.columns).fillna(0.0)
|
||||
port_returns = (period_df[w_series.index] * w_series).sum(axis=1)
|
||||
equity = (1.0 + port_returns).cumprod()
|
||||
run_max = equity.cummax()
|
||||
dd = equity / run_max - 1.0
|
||||
plt.plot(dd.index, dd.values, label=pname)
|
||||
plotted += 1
|
||||
if plotted == 0:
|
||||
print("[underwater] Nessun portafoglio valido da plottare.")
|
||||
plt.close()
|
||||
return
|
||||
plt.title("Underwater (Drawdown) - Portafogli ottimizzati (ultimi 5 anni)")
|
||||
plt.xlabel("Data")
|
||||
plt.ylabel("Drawdown")
|
||||
if ylim is not None:
|
||||
plt.ylim(*ylim)
|
||||
plt.grid(True, alpha=0.3)
|
||||
plt.legend(loc="best")
|
||||
plt.tight_layout()
|
||||
out_png = plot_path("Underwater_ALL_PORTS.png")
|
||||
if os.path.exists(out_png):
|
||||
os.remove(out_png)
|
||||
plt.savefig(out_png, dpi=150, bbox_inches='tight')
|
||||
plt.close()
|
||||
print(f"[underwater] Grafico sovrapposto salvato: {out_png}")
|
||||
|
||||
plot_equity_overlay_all(['VAR3_5Y', 'VAR6_1Y', 'VAR6_3Y', 'VAR6_5Y', 'VAR9_5Y'])
|
||||
plot_underwater_overlay_all(['VAR3_5Y', 'VAR6_1Y', 'VAR6_3Y', 'VAR6_5Y', 'VAR9_5Y'])
|
||||
|
||||
# =========================
|
||||
# EXPORT - (1) ASSET METRICS SOLO
|
||||
# =========================
|
||||
asset_metrics_path = excel_path('asset_metrics_v2.5.xlsx')
|
||||
with pd.ExcelWriter(asset_metrics_path, engine='openpyxl', mode='w') as writer:
|
||||
for name, metrics_df in per_asset_metrics.items():
|
||||
metrics_df.to_excel(writer, sheet_name=f'Metriche_{name}', index=False)
|
||||
|
||||
consolidated = []
|
||||
for name, metrics_df in per_asset_metrics.items():
|
||||
tmp = metrics_df.copy()
|
||||
tmp.insert(0, 'Periodo', name)
|
||||
consolidated.append(tmp)
|
||||
consolidated_df = pd.concat(consolidated, ignore_index=True) if consolidated else pd.DataFrame()
|
||||
if not consolidated_df.empty:
|
||||
consolidated_df.to_excel(writer, sheet_name='Metriche_Consolidate', index=False)
|
||||
|
||||
print(f"File '{asset_metrics_path}' creato con soli fogli Metriche_* e Metriche_Consolidate.")
|
||||
|
||||
# =========================
|
||||
# COSTRUZIONE "WITH NAMES" (solo PH1)
|
||||
# =========================
|
||||
optimized_weights_with_names = optimized_weights.copy()
|
||||
optimized_weights_with_names['Nome ETF'] = [
|
||||
df.loc[df['ISIN'] == isin, 'Nome'].values[0] if (df['ISIN'] == isin).any() else ""
|
||||
for isin in optimized_weights.index
|
||||
]
|
||||
|
||||
# =========================
|
||||
# EXPORT - (2) RIEPILOGO PESI & METRICHE
|
||||
# =========================
|
||||
summary_df = pd.DataFrame(summary_data)
|
||||
summary_path = excel_path('optimized_weights_summary_v2.5.xlsx')
|
||||
with pd.ExcelWriter(summary_path, engine='openpyxl', mode='w') as writer:
|
||||
optimized_weights_with_names.to_excel(writer, sheet_name='Pesi Ottimizzati', index=True)
|
||||
summary_df.to_excel(writer, sheet_name='metriche', index=False)
|
||||
|
||||
print(f"File '{summary_path}' creato con 'Pesi Ottimizzati' e 'metriche'.")
|
||||
@@ -1,6 +1,6 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Ottimizzatore v2.5.2 - VERSIONE LITE
|
||||
Ottimizzatore Lite
|
||||
"""
|
||||
|
||||
# =========================
|
||||
@@ -13,6 +13,7 @@ import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
import yaml
|
||||
import logging
|
||||
from datetime import datetime
|
||||
|
||||
from sqlalchemy import create_engine, text
|
||||
from sqlalchemy.exc import SQLAlchemyError
|
||||
@@ -295,7 +296,7 @@ except SQLAlchemyError as e:
|
||||
template_path = os.path.join(INPUT_DIR, 'Template_Guardian.xls')
|
||||
template_df = pd.read_excel(template_path)
|
||||
|
||||
file_path = os.path.join(INPUT_DIR, 'Universo per ottimizzatore v.2.4.xlsx')
|
||||
file_path = os.path.join(INPUT_DIR, 'Universo per ottimizzatore.xlsx')
|
||||
df = pd.read_excel(
|
||||
file_path,
|
||||
usecols=['ISIN', 'Nome', 'Categoria', 'Asset Class', 'PesoMax', 'PesoFisso', 'Codice Titolo'],
|
||||
@@ -349,6 +350,7 @@ riskfree_rate = 0.02
|
||||
# =========================
|
||||
optimized_weights = pd.DataFrame()
|
||||
per_asset_metrics = {}
|
||||
export_rows = []
|
||||
|
||||
for (years, target_vol), name in volatility_targets.items():
|
||||
period_start_date = end_date - pd.DateOffset(years=years)
|
||||
@@ -479,9 +481,7 @@ for (years, target_vol), name in volatility_targets.items():
|
||||
output_df = template_df.iloc[0:0].copy()
|
||||
else:
|
||||
output_df = results_full_df.reindex(columns=template_cols)
|
||||
output_file_path = excel_path(f'PTFOPT{name}.xlsx')
|
||||
output_df.to_excel(output_file_path, index=False)
|
||||
print(f"File {output_file_path} saved successfully.")
|
||||
export_rows.append(output_df)
|
||||
|
||||
# --- Pie chart asset allocation: salva in Output senza mostrare ---
|
||||
asset_allocations = {asset: 0 for asset in asset_class_limits}
|
||||
@@ -583,7 +583,7 @@ for (years, target_vol), name in volatility_targets.items():
|
||||
# =========================
|
||||
# EXPORT — (1) ASSET METRICS SOLO
|
||||
# =========================
|
||||
asset_metrics_path = excel_path('asset_metrics_v2.5.xlsx')
|
||||
asset_metrics_path = excel_path('Asset metrics ITA.xlsx')
|
||||
with pd.ExcelWriter(asset_metrics_path, engine='openpyxl', mode='w') as writer:
|
||||
for name, metrics_df in per_asset_metrics.items():
|
||||
metrics_df.to_excel(writer, sheet_name=f'Metriche_{name}', index=False)
|
||||
@@ -613,9 +613,22 @@ optimized_weights_with_names['Nome ETF'] = [
|
||||
# =========================
|
||||
summary_df = pd.DataFrame(summary_data)
|
||||
|
||||
summary_path = excel_path('optimized_weights_summary_v2.5_LITE.xlsx')
|
||||
summary_path = excel_path('Pesi ottimizzati ITA.xlsx')
|
||||
with pd.ExcelWriter(summary_path, engine='openpyxl', mode='w') as writer:
|
||||
optimized_weights_with_names.to_excel(writer, sheet_name='Pesi Ottimizzati', index=True)
|
||||
summary_df.to_excel(writer, sheet_name='Riepilogo', index=False)
|
||||
|
||||
print(f"File '{summary_path}' creato con 'Pesi Ottimizzati' e 'Riepilogo' (solo PH1, versione LITE).")
|
||||
print(f"File '{summary_path}' creato con 'Pesi Ottimizzati' e 'Riepilogo'.")
|
||||
|
||||
# =========================
|
||||
# EXPORT UNICO PESI OTTIMIZZATI
|
||||
# =========================
|
||||
date_tag = datetime.now().strftime("%Y%m%d")
|
||||
combined_path = excel_path(f"{date_tag}_Pesi_ottimizzati.xlsx")
|
||||
with pd.ExcelWriter(combined_path, engine='openpyxl', mode='w') as writer:
|
||||
if export_rows:
|
||||
combined_df = pd.concat([template_df] + export_rows, ignore_index=True)
|
||||
else:
|
||||
combined_df = template_df.copy()
|
||||
combined_df.to_excel(writer, sheet_name='Pesi Ottimizzati', index=False)
|
||||
print(f"Pesi ottimizzati salvati in un unico file/sheet: '{combined_path}'.")
|
||||
@@ -7,6 +7,7 @@ from pypfopt.exceptions import OptimizationError
|
||||
import matplotlib.pyplot as plt
|
||||
import os
|
||||
import sys
|
||||
from datetime import datetime
|
||||
|
||||
# Cartelle di input/output/plot
|
||||
OUTPUT_DIR = "Output"
|
||||
@@ -105,6 +106,7 @@ riskfree_rate = 0.02
|
||||
# Ottimizzazione per ciascun target di volatilità e salvataggio dei risultati
|
||||
optimized_weights = pd.DataFrame()
|
||||
summary_data = []
|
||||
export_rows = []
|
||||
for (years, target_vol), name in volatility_targets.items():
|
||||
period_start_date = end_date - pd.DateOffset(years=years)
|
||||
period_df = final_df.loc[period_start_date:end_date]
|
||||
@@ -168,13 +170,8 @@ for (years, target_vol), name in volatility_targets.items():
|
||||
# Creazione del DataFrame per i risultati
|
||||
results_df = pd.DataFrame(results)
|
||||
|
||||
# Concatenazione dei risultati con il template_df
|
||||
output_df = pd.concat([template_df, results_df], ignore_index=True)
|
||||
|
||||
# Salva il file
|
||||
output_file_path = excel_path(f'PTFOPT{name}.xlsx')
|
||||
output_df.to_excel(output_file_path, index=False)
|
||||
print(f"File {output_file_path} saved successfully.")
|
||||
# Accumula le righe per esportazione unica
|
||||
export_rows.append(results_df)
|
||||
|
||||
# Grafico a torta per ciascun portafoglio ottimizzato
|
||||
asset_allocations = {asset: 0 for asset in asset_class_limits}
|
||||
@@ -197,11 +194,22 @@ optimized_weights_with_names = optimized_weights.copy()
|
||||
optimized_weights_with_names['Nome ETF'] = [df.loc[df['ISIN'] == isin, 'Nome'].values[0] for isin in optimized_weights.index]
|
||||
|
||||
summary_df = pd.DataFrame(summary_data)
|
||||
output_path = excel_path("optimized_weights_GBP.xlsx")
|
||||
output_path = excel_path("Riepilogo pesi GBP.xlsx")
|
||||
with pd.ExcelWriter(output_path, engine='openpyxl', mode='w') as writer:
|
||||
optimized_weights_with_names.to_excel(writer, sheet_name='Pesi Ottimizzati', index=True)
|
||||
summary_df.to_excel(writer, sheet_name='metriche', index=False)
|
||||
|
||||
print(f"All optimized weights saved to '{output_path}' (with metriche).")
|
||||
|
||||
# Export unico con tutti i pesi in un solo foglio
|
||||
date_tag = datetime.now().strftime("%Y%m%d")
|
||||
combined_path = excel_path(f"{date_tag} Pesi ottimizzati UK.xlsx")
|
||||
with pd.ExcelWriter(combined_path, engine='openpyxl', mode='w') as writer:
|
||||
if export_rows:
|
||||
combined_df = pd.concat([template_df] + export_rows, ignore_index=True)
|
||||
else:
|
||||
combined_df = template_df.copy()
|
||||
combined_df.to_excel(writer, sheet_name='Pesi Ottimizzati', index=False)
|
||||
print(f"Pesi ottimizzati salvati in un unico file/sheet: '{combined_path}'.")
|
||||
|
||||
|
||||
Reference in New Issue
Block a user