Add asset names to open trades and copy exports

This commit is contained in:
fredmaloggia
2025-11-17 17:06:46 +01:00
parent ecf03b7775
commit ad66cc5fe0
4 changed files with 512 additions and 380 deletions

236
shared_utils.py Normal file
View File

@@ -0,0 +1,236 @@
"""Shared helpers for trading pattern scripts."""
from __future__ import annotations
import json
from pathlib import Path
from typing import Any, Dict, List, Optional, Sequence, Tuple
import numpy as np
import pandas as pd
import pyodbc
DEFAULT_CONFIG_PATH = Path("config/pattern_knn_config.json")
def load_config(path: Optional[Path] = None) -> Dict:
"""Load the JSON configuration that holds operational parameters."""
cfg_path = Path(path or DEFAULT_CONFIG_PATH)
if not cfg_path.exists():
raise FileNotFoundError(f"Missing configuration file: {cfg_path}")
with cfg_path.open("r", encoding="utf-8") as fh:
return json.load(fh)
def require_section(config: Dict, section: str) -> Dict:
sect = config.get(section)
if not isinstance(sect, dict):
raise KeyError(f"Missing '{section}' section in configuration file")
return sect
def require_value(section: Dict, key: str, section_name: str) -> Any:
if key not in section:
raise KeyError(f"Missing key '{key}' inside '{section_name}' section of configuration file")
return section[key]
def detect_column(df: pd.DataFrame, candidates: Sequence[str]) -> Optional[str]:
"""Return the first column whose name matches one of the candidates (case insensitive)."""
low = {c.lower(): c for c in df.columns}
for cand in candidates:
cl = cand.lower()
if cl in low:
return low[cl]
for cand in candidates:
cl = cand.lower()
for col in df.columns:
if cl in col.lower():
return col
return None
def read_connection_txt(path: Path | str = "connection.txt") -> str:
params: Dict[str, str] = {}
path = Path(path)
if not path.exists():
raise FileNotFoundError(f"Missing connection.txt at {path}")
for line in path.read_text(encoding="utf-8").splitlines():
line = line.strip()
if not line or line.startswith("#") or "=" not in line:
continue
k, v = line.split("=", 1)
params[k.strip().lower()] = v.strip()
username = params.get("username")
password = params.get("password")
host = params.get("host")
port = params.get("port", "1433")
database = params.get("database")
if not all([username, password, host, database]):
raise ValueError("connection.txt incompleto: servono username/password/host/database.")
installed = [d for d in pyodbc.drivers()]
driver_q = "ODBC+Driver+18+for+SQL+Server" if "ODBC Driver 18 for SQL Server" in installed else "ODBC+Driver+17+for+SQL+Server"
return f"mssql+pyodbc://{username}:{password}@{host}:{port}/{database}?driver={driver_q}"
def z_norm(arr: np.ndarray) -> Optional[np.ndarray]:
arr = np.asarray(arr, dtype=float)
if arr.size == 0:
return None
mu = arr.mean()
sd = arr.std()
if sd < 1e-12:
return None
return (arr - mu) / (sd + 1e-12)
def build_pattern_library(
ret_series: pd.Series,
wp: int,
ha: int,
embargo: Optional[int] = None,
) -> Tuple[Optional[np.ndarray], Optional[np.ndarray]]:
"""Create the normalized pattern windows and their realized outcomes.
Args:
ret_series: Series of returns (ordered oldest→latest).
wp: Window length for the pattern.
ha: Holding horizon used to compute the outcome.
embargo: Optional number of most-recent observations to exclude when
building the library (useful to avoid leakage when reusing the
same series for inference).
"""
x = ret_series.dropna().values
n = len(x)
if n < wp + ha + 10:
return None, None
embargo = int(embargo or 0)
usable_n = n - max(0, embargo)
if usable_n <= wp + ha:
return None, None
wins: List[np.ndarray] = []
outs: List[float] = []
last_start = usable_n - wp - ha
if last_start <= 0:
return None, None
for t in range(0, last_start + 1):
win = x[t : t + wp]
winzn = z_norm(win)
if winzn is None:
continue
outcome = np.sum(x[t + wp : t + wp + ha])
wins.append(winzn)
outs.append(outcome)
if not wins:
return None, None
return np.array(wins), np.array(outs)
def predict_from_library(
curr_win: np.ndarray,
lib_wins: np.ndarray,
lib_out: np.ndarray,
k: int = 25,
) -> Tuple[float, float, np.ndarray]:
dists = np.linalg.norm(lib_wins - curr_win, axis=1)
idx = np.argsort(dists)[: min(k, len(dists))]
return float(np.median(lib_out[idx])), float(np.mean(dists[idx])), idx
def characterize_window(
ret_series: pd.Series,
wp: int,
z_rev: float = 2.0,
z_vol: float = 2.0,
std_comp_pct: float = 0.15,
) -> Tuple[Optional[str], float]:
x = ret_series.dropna().values
if len(x) < max(wp, 30):
return None, 0.0
win = x[-wp:]
mu, sd = win.mean(), win.std()
if sd < 1e-12:
return "compression", 0.5
last = win[-1]
z_last = (last - mu) / (sd + 1e-12)
abs_z_last = abs(z_last)
last3 = win[-3:] if len(win) >= 3 else win
sum3 = np.sum(last3)
if len(x) > 3 * wp:
roll_std = pd.Series(x).rolling(wp).std().dropna().values
if len(roll_std) > 20:
pct = (roll_std < np.std(win)).mean()
else:
pct = 0.5
else:
pct = 0.5
if pct < std_comp_pct:
return "compression", float(1.0 - pct)
if abs(sum3) > 2 * sd / np.sqrt(3) and np.sign(last3).sum() in (3, -3):
conf = min(1.0, abs(sum3) / (sd + 1e-12))
return "momentum_burst", float(conf)
mean_prev = np.mean(win[:-1]) if len(win) > 1 else 0.0
if abs_z_last >= z_rev and np.sign(last) != np.sign(mean_prev):
conf = min(1.0, abs_z_last / 3.0)
return "reversal_candidate", float(conf)
if abs_z_last >= z_vol:
conf = min(1.0, abs_z_last / 3.0)
return "vol_spike", float(conf)
return None, 0.0
def hurst_rs(series: pd.Series) -> Optional[float]:
x = pd.to_numeric(series.dropna(), errors="coerce").astype(float).values
n = len(x)
if n < 100:
return None
x = x - x.mean()
z = np.cumsum(x)
r = z.max() - z.min()
s = x.std(ddof=1)
if s <= 0 or r <= 0:
return None
h = np.log(r / s) / np.log(n)
if not np.isfinite(h):
return None
return float(h)
def build_hurst_map(returns_long: pd.DataFrame, lookback: int = 252) -> Dict[str, float]:
if returns_long.empty:
return {}
ret_wide = returns_long.pivot(index="Date", columns="ISIN", values="Ret").sort_index()
hurst_map: Dict[str, float] = {}
for isin in ret_wide.columns:
series = ret_wide[isin].dropna().astype(float)
if len(series) < max(lookback, 100):
continue
h_val = hurst_rs(series.iloc[-lookback:])
if h_val is None or not np.isfinite(h_val):
continue
hurst_map[str(isin)] = float(h_val)
return hurst_map
__all__ = [
"build_hurst_map",
"build_pattern_library",
"characterize_window",
"detect_column",
"require_section",
"require_value",
"hurst_rs",
"load_config",
"predict_from_library",
"read_connection_txt",
"z_norm",
]